精英家教网 > 高中数学 > 题目详情

(本小题满分14分)
已知是定义在R上的奇函数,且,求:
(1)的解析式。   
(2)已知,求函数在区间上的最小值。

(1)
(2) 。

解析试题分析:1)

…………4分

(2)
开口向上且关于x=2对称…………7分



         …………14分
考点:本题主要考查分段函数的概念,函数的奇偶性,二次函数的图象和性质
点评:典型题,首先利用函数的奇偶性,求得函数表达式,对二次函数在闭区间的最值情况进行研究,属于“定轴动区间问题”。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
设函数满足:对任意的实数
(Ⅰ)求的解析式;
(Ⅱ)若方程有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)已知函数
⑴若函数的图象过原点,且在原点处的切线斜率是,求的值;
⑵若函数在区间上不单调,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分)如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.
(1)判断函数是否具有“性质”,若具有“性质”求出所有的值;若不具有“性质”,请说明理由.
(2)已知具有“性质”,且当,求上的最大值.
(3)设函数具有“性质”,且当时,.若交点个数为2013个,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知函数
(1) 求a的值;
(2) 证明的奇偶性;
(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题13分)已知函数
(Ⅰ)若,试判断并证明的单调性;
(Ⅱ)若函数上单调,且存在使成立,求的取值范围;
(Ⅲ)当时,求函数的最大值的表达式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,且
(1)若函数是偶函数,求的解析式;(3分)
(2)在(1)的条件下,求函数上的最大、最小值;(3分)
(3)要使函数上是单调函数,求的范围。(4分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)设是定义在上的单调增函数,满足,

求(1)
(2)若,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)当的取值范围;
(2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。

查看答案和解析>>

同步练习册答案