精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知函数
(1)当的取值范围;
(2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。

(1);(2)这样的不存在。

解析试题分析:(1)根据对数函数有意义可知,真数部分上恒成立,即,得到a的范围。
(2)假设存在这样的
,且有,可知外层为增函数,得到a的范围,进而求解最值。
解:(1),   上恒成立,即

    …………..4分
(2)假设存在这样的
,且有………..6分
在区间内为增函数,    即………………8分
     …………..10分
内,所以这样的不存在……………12分
考点:本题主要考查对数函数的定义域和复合函数单调性的运用求解最值。
点评:解决该试题的关键是根据已知中恒有意义说明了最小值处 函数值大于零,同时根据存在a使得函数递减,则利用同增异减的思想得到a的取值情况。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知是定义在R上的奇函数,且,求:
(1)的解析式。   
(2)已知,求函数在区间上的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分) 求至少有一个负实根的充要条件。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)已知).
⑴求的单调区间;
⑵若内有且只有一个极值点, 求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知-1≤x≤2,求函数f(x)=3+2·3x+1-9x的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数f (x)=,其中a∈R.
(1)若a=1,f (x)的定义域为[0,3],求f (x)的最大值和最小值.
(2)若函数f (x)的定义域为区间(0,+∞),求a的取值范围使f (x)在定义域内是单调减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)如图,△OAB是边长为2的正三角形,记△OAB位于直线左侧的图形的面积为。试求函数的解析式,并画出函数的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数=,2≤≤4
(1)求该函数的值域;
(2)若对于恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)
已知函数
(1)若函数上为增函数,求实数的取值范围
(2)当时,求上的最大值和最小值
(3)求证:对任意大于1的正整数恒成立

查看答案和解析>>

同步练习册答案