(12分)已知().
⑴求的单调区间;
⑵若在内有且只有一个极值点, 求a的取值范围.
⑴①当时,在和单调递增,在单调递减;
②当时,单调递增;⑵.
解析试题分析:(1)先求出导函数f'(x),根据函数f(x)在区间(0, )上单调递增,在区间( ,1)上单调递减,可知x=是函数的极值,从而f'()=0,解之即可求出m的值;
(2)本小问由在上只有一个极值点,知,即;且要满足得到参数a的范围。
解:⑴,;
①当时,即时,方程有两个根,
分别为,;故在和单调递增,在单调递减;
②当时,单调递增;
⑵由在上只有一个极值点,知,即;
且要满足,解得,综合得.
考点:本题主要考查了函数恒成立问题,以及利用导数研究函数的单调性等基础知识,考查计算能力和分析问题的能力,属于基础题.
点评:解决该试题的关键是利用导数得到函数的单调去甲,以及函数的极值,进而得到从那数m的值,同时对于极值点的问题,利用判别式和区间端点的函数值的符号来判定得到。
科目:高中数学 来源: 题型:解答题
(本题满分18分)如果函数的定义域为,对于定义域内的任意,存在实数使得成立,则称此函数具有“性质”.
(1)判断函数是否具有“性质”,若具有“性质”求出所有的值;若不具有“性质”,请说明理由.
(2)已知具有“性质”,且当时,求在上的最大值.
(3)设函数具有“性质”,且当时,.若与交点个数为2013个,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知函数
(1)当的取值范围;
(2)是否存在这样的实数,使得函数在区间上为减函数,且最大值为1,若存在,求出值;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)设为奇函数,为常数.
(1)求的值;
(2)求的值;
(3)若对于区间[3,4]上的每一个的值,不等式>恒成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com