精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,a1=1,数列{
Sn
n
}
是公差为1的等差数列.
(1)求数列{an}的通项公式;
(2)若已知a1-a2+a3-a4+…+(-1)k-1ak的值等于m(m>0),试用含m的式子来表示a1+a2+a3+a4+…ak的值.
(1)∵数列{
Sn
n
}
是公差为1的等差数列
sn
n
=n

∴sn=n2
an=
1,n=1
sn-sn-1
(n≥2)

∴an=2n-1
(2)∵m>0,
∴k是奇数,
a1-a2+a3-a4+…+(-1)k-1ak=a1+2×
k-1
2
=m

∴k=m,
∴a1+a2+a3+a4+…ak=k2=m2
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案