精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x2-2x-3(x>0),在公差大于0等差数列{an}中,a1=f(x-1),a2=-
32
,a3=f(x).
(1)求x的值及数列{an}的通项公式an
(2)令数列bn=2n+an.求数列{bn}的前n项和.
分析:(1)利用函数解析式,根据a1,a2,a3成等差数列,可求x的值,从而可求数列的公差,进而可得数列{an}的通项公式an
(2)根据数列{bn}的通项,分组求和,即可求数列{bn}的前n项和.
解答:解:(1)a1=f(x-1)=x2-4x,a3=x2-2x-3
由a1,a2,a3成等差数列,得2a2=a1+a3
所以x2-4x+x2-2x-3=-3
所以x2-3x=0
又x>0,所以x=3
所以a1=-3,a3=0,所以公差d=
3
2

所以an=-3+(n-1)×
3
2
=
3
2
n-
9
2

(2)数列{bn}的前n项和
Sn=b1+b2+…+bn=(21+22+…+2n)+(a1+a2+…+an)

=
2(1-2n)
1-2
+
n(-3+
3
2
n-
9
2
)
2

=2n+1-
3
4
n2-
23
4
点评:本题考查数列与函数的结合,考查数列的通项与求和,正确运用数列的求和公式是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案