分析 (1)曲线C1的参数方程消去参数可得普通方程.曲线C2的极坐标方程展开可得:$\frac{\sqrt{2}}{2}$ρ(sinθ+cosθ)=$\sqrt{2}$,利用互化公式公式化为直角坐标方程.
(2)利用点到直线的距离公式可得圆心C1到直线C2的距离d,与r比较即可得出位置关系.
解答 解:(1)曲线C1的参数方程为$\left\{\begin{array}{l}{x=2+cosα}\\{y=1+sinα}\end{array}\right.$,(α为参数),
消去参数可得曲线C1的普通方程:(x-2)2+(y-1)2=1,
可得圆心C1(2,1),半径r=1.
曲线C2的极坐标方程为ρsin(θ+$\frac{π}{4}$)=$\sqrt{2}$,
展开可得:$\frac{\sqrt{2}}{2}ρ$(sinθ+cosθ)=$\sqrt{2}$,
∴曲线C2的直角坐标方程为:x+y-2=0.
(2)圆心C1到直线C2的距离d=$\frac{|2+1-2|}{\sqrt{2}}$=$\frac{\sqrt{2}}{2}<$1=r,
∴曲线C1与曲线C2的位置关系是相交.
点评 本题考查曲线的普通方程与直角坐标方程的求法,考查两曲线的位置关系的判断,考查参数方程、直角坐标方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.
科目:高中数学 来源: 题型:选择题
| 捐款数/元 | 350 | 360 | 370 | 380 | 390 | 400 | 410 |
| 班级个数/个 | 3 | 1 | 6 | 9 | 4 | 2 | 1 |
| A. | 370元 | B. | 380元 | C. | 390元 | D. | 410元 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin$(\frac{1}{2}x+\frac{π}{6})$ | B. | y=sin$(\frac{1}{2}x-\frac{π}{6})$ | C. | y=sin$(2x+\frac{π}{6})$ | D. | y=sin$(2x+\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1) | B. | (-1,+∞) | C. | (3,+∞) | D. | (0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com