精英家教网 > 高中数学 > 题目详情

从集合{1,2,3,4,5}中随机选取一个a,从{1,2,3}中随机选一个数b,则a≥b的概率为________.


分析:写出所有的取法得到的(a,b)的个数,找出满足a≥b的选法得到的(a,b)的个数,由此求得a≥b的概率.
解答:从集合{1,2,3,4,5}中随机选取一个a,有5种方法,再从{1,2,3}中随机选一个数b,有3种方法,根据分步计数原理,所有的取法共有5×3=15种.
即所有的(a,b)共有15个:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3)、
(4,1)、(4,2)、(4,3)、(5,1)、(5,2)、(3,3).
其中,满足a≥b的选法有:(1,1)、(2,1)、(2,2)、(3,1)、(3,2)、(3,3)、(4,1)、(4,2)、
(4,3)、(5,1)、(5,2)、(3,3),共12个.
故满足a≥b的选法有12种,故a≥b的概率为 =
故答案为
点评:本题主要考查两个基本原理的应用,求随机事件的概率,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从集合{-1、-2、-3、-4、0、1、2、3、4、5}中,随机选出5个数字组成一个子集,使得这5个数中的任何两个数之和都不等于1,则取出这样的子集的概率为
8
63
8
63

查看答案和解析>>

科目:高中数学 来源: 题型:

从集合{1,2,3,4,5}中任取三个元素构成三元有序数组(a1,a2,a3),规定a1<a2<a3
(1)从所有的三元有序数组中任选一个,求它的所有元素之和等于10的概率
(2)定义三元有序数组(a1,a2,a3)的“项标距离”为d=
3
i=1
|ai-i|
(其中
n
i=1
xi=x1+x2+…+xn
),从所有的三元有序数组中任选一个,求它的“项标距离”d为偶数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

从集合{1,2,3,5,7,-4,-6,-8}中任取两个不同的元素,分别作为方程Ax2+By2=1中的A、B的值,则此方程可表示
30
30
种不同的双曲线.

查看答案和解析>>

科目:高中数学 来源: 题型:

从集合{-1,1,2,3}中随机选取一个数记为m,从集合{1,2,3}中随机选取一个数记为n,则方程
x
2
 
m
+
y
2
 
n
=1表示椭圆的概率为
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

从集合{1,2,3,…,20}中选3个不同的数,使这3个数成递增的等差数列,则这样的数列共有
90
90
组.

查看答案和解析>>

同步练习册答案