精英家教网 > 高中数学 > 题目详情
17.已知抛物线y2=2px(p>0)的焦点为F,点P为抛物线上的动点,点M为其准线上的动点,若△FPM为边长是6的等边三角形,则此抛物线的方程为y2=6x.

分析 根据题意,设抛物线的准线为l,与x轴交点为N,分析可得FN=p,由抛物线的性质分析可得PM⊥l,进而分析可得△MNF为直角三角形,故PM=2p,又由题意△FPM为边长是6的等边三角形,可得2p=6,即可得抛物线的方程.

解答 解:根据题意,设抛物线的准线为l,与x轴交点为N,则N(-$\frac{p}{2}$,0),FN=p,
若△FPM为边长是6的等边三角形,即有PF=PM,
则PM⊥l,
又由∠PMF=60°,
则∠PMN=90°-60°=30°,
△MNF为直角三角形,故PM=2p,
又由△FPM为边长是6的等边三角形,即PM=6,
则有2p=6;
即此抛物线的方程为y2=6x;
故答案为:y2=6x.

点评 本题考查抛物线的几何性质,涉及直线与抛物线的位置关系.考查了学生综合把握所学知识和基本的运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.定义对于两个量A和B,若A与B的取值范围相同,则称A和B能相互置换.例如f(x)=x+1,x∈[0,1]和$g(x)=2x-1,x∈[{1,\frac{3}{2}}]$,易知f(x)和g(x)能相互置换.
(1)已知f(x)=x2+bx+c对任意x∈Z恒有f(x)≥f(0),又$a=sinθ,θ∈[{-\frac{π}{2},\frac{π}{2}}]$,判断a与b能否相互置换.
(2)已知$f(x)=\frac{{{x^2}+kx+1}}{{{x^2}+x+1}}({x>0})$对于任意正数a,b,c,f(a),f(b),f(c)能构成三角形三边,又$g(x)={2^x}-\frac{3}{2},x∈[{m,n}]$,若k与g(x)能相互置换,求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.阅读如图所示的程序框图,运行相应的程序,输出的S=(  )
A.40B.21C.20D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.如图,网格上小正方形的边长为$\frac{1}{2}$,粗线画出的是某空间几何体的三视图,则该几何体的体积为(  )
A.24B.12C.4D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$sinx+siny=\frac{1}{3}$,求μ=siny+cos2x的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知焦点在x轴上,渐近线方程为$y=±\frac{3}{4}x$的双曲线和曲线$\frac{x^2}{4}+\frac{y^2}{b^2}=1({b>0})$的离心率之积为1,则b的值 为(  )
A.$\frac{6}{5}$B.3C.3或4D.$\frac{6}{5}$或$\frac{10}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow{b}$=(2x+3,-x)(x∈R).
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求|$\overrightarrow{a}-\overrightarrow{b}$|
(2)若$\overrightarrow{a}$与$\overrightarrow{b}$夹角为锐角,求x的取值范围.
(3)若|$\overrightarrow a}$|=2,求与${\overrightarrow a}$垂直的单位向量$\overrightarrow c$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.把-1485°化成2kπ+α(0<α<2π,k∈Z)的形式是-10π+$\frac{7π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若椭圆E1:$\frac{x^2}{a_1^2}+\frac{y^2}{b_1^2}=1$与椭圆E2:$\frac{x^2}{a_2^2}+\frac{y^2}{b_2^2}=1$满足$\frac{a_1}{a_2}=\frac{b_1}{b_2}=m({m>0})$,则称这两个椭圆相似,m叫相似比.若椭圆M1与椭圆${M_2}:{x^2}+2{y^2}=1$相似且过$({1,\frac{{\sqrt{2}}}{2}})$点.
(I)求椭圆M1的标准方程;
(II)过点P(-2,0)作斜率不为零的直线l与椭圆M1交于不同两点A、B,F为椭圆M1的右焦点,直线AF、BF分别交椭圆M1于点G、H,设$\overrightarrow{AF}={λ_1}\overrightarrow{FG}$,$\overrightarrow{BF}={λ_2}\overrightarrow{FH}({{λ_1}、{λ_2}∈R})$,求λ12的取值范围.

查看答案和解析>>

同步练习册答案