9£®ÒÑÖªÆ½ÃæÏòÁ¿$\overrightarrow{a}$=£¨1£¬x£©£¬$\overrightarrow{b}$=£¨2x+3£¬-x£©£¨x¡ÊR£©£®
£¨1£©Èô$\overrightarrow{a}$¡Î$\overrightarrow{b}$£¬Çó|$\overrightarrow{a}-\overrightarrow{b}$|
£¨2£©Èô$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇΪÈñ½Ç£¬ÇóxµÄȡֵ·¶Î§£®
£¨3£©Èô|$\overrightarrow a}$|=2£¬ÇóÓë${\overrightarrow a}$´¹Ö±µÄµ¥Î»ÏòÁ¿$\overrightarrow c$µÄ×ø±ê£®

·ÖÎö £¨1£©¸ù¾ÝÏòÁ¿Æ½ÃæÁз½³Ì½â³öx£¬Çó³ö$\overrightarrow{a}-\overrightarrow{b}$µÄ×ø±ê¼´¿ÉµÃ³ö|$\overrightarrow{a}-\overrightarrow{b}$|£»
£¨2£©Áîcos£¼$\overrightarrow{a}£¬\overrightarrow{b}$£¾£¾0£¬½â³öx£¬ÔÙÈ¥µô$\overrightarrow{a}£¬\overrightarrow{b}$¹²ÏßµÄÇé¿ö¼´¿É£»
£¨3£©¸ù¾Ý|$\overrightarrow{a}$|=2¼ÆËãx£¬Éè$\overrightarrow{c}$=£¨m£¬n£©£¬Áз½³Ì×é½â³ö¼´¿É£®

½â´ð ½â£º£¨1£©Èô$\overrightarrow{a}¡Î\overrightarrow{b}$£¬Ôò-x-£¨2x+3£©x=0£¬½âµÃx=0»òx=-2£¬
µ±x=0ʱ£¬$\overrightarrow{a}-\overrightarrow{b}$=£¨-2£¬0£©£¬¡à|$\overrightarrow{a}-\overrightarrow{b}$|=2£¬
µ±x=-2ʱ£¬$\overrightarrow{a}-\overrightarrow{b}$=£¨2£¬-4£©£¬¡à|$\overrightarrow{a}-\overrightarrow{b}$|=2$\sqrt{5}$£®
£¨2£©Èô$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇΪÈñ½Ç£¬Ôò$\overrightarrow{a}•\overrightarrow{b}$£¾0£¬¼´2x+3-x2£¾0£¬¡à-1£¼x£¼3£¬
ÓÉ£¨1£©¿ÉÖªµ±x=0ʱ£¬$\overrightarrow{a}¡Î\overrightarrow{b}$£¬´Ëʱ$\overrightarrow{b}=3\overrightarrow{a}$£¬$\overrightarrow{a}£¬\overrightarrow{b}$µÄ¼Ð½ÇΪ0£¬²»·ûºÏÌâÒ⣬ÉáÈ¥£¬
¡àxµÄȡֵ·¶Î§ÊÇ£¨-1£¬0£©¡È£¨0£¬3£©£®
£¨3£©¡ß|$\overrightarrow{a}$|=2£¬¡à1+x2=4£¬½âµÃx=¡À$\sqrt{3}$£¬
Éè$\overrightarrow{c}$=£¨m£¬n£©£¬Ôòm+nx=0£¬ÇÒm2+n2=1£¬
¡àµ±x=$\sqrt{3}$ʱ£¬$\left\{\begin{array}{l}{m+\sqrt{3}n=0}\\{{m}^{2}+{n}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{\sqrt{3}}{2}}\\{n=-\frac{1}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{m=-\frac{\sqrt{3}}{2}}\\{n=\frac{1}{2}}\end{array}\right.$£»
µ±x=-$\sqrt{3}$ʱ£¬$\left\{\begin{array}{l}{m-\sqrt{3}n=0}\\{{m}^{2}+{n}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{\sqrt{3}}{2}}\\{n=\frac{1}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{m=-\frac{\sqrt{3}}{2}}\\{n=-\frac{1}{2}}\end{array}\right.$£¬
ËùÒÔµ±x=$\sqrt{3}$ʱ£¬$\overrightarrow{c}$µÄ×ø±êΪ£¨$\frac{\sqrt{3}}{2}$£¬-$\frac{1}{2}$£©»ò£¨-$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©£¬
µ±x=-$\sqrt{3}$ʱ£¬$\overrightarrow{c}$µÄ×ø±êΪ£¨$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©»ò£¨-$\frac{\sqrt{3}}{2}$£¬-$\frac{1}{2}$£©£®

µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄ×ø±êÔËË㣬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑÖª$f£¨¦Á£©=\frac{{sin£¨¦Á-\frac{¦Ð}{2}£©cos£¨\frac{3¦Ð}{2}-¦Á£©tan£¨¦Ð+¦Á£©cos£¨\frac{¦Ð}{2}+¦Á£©}}{sin£¨2¦Ð-¦Á£©tan£¨-¦Á-¦Ð£©sin£¨-¦Á-¦Ð£©}$£®
£¨1£©»¯¼òf£¨¦Á£©£»
£¨2£©Èô$¦Á=-\frac{31¦Ð}{3}$£¬Çóf£¨¦Á£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®ÒÑÖªº¯Êý$f£¨x£©=\frac{1}{3}{x^3}+ax+b£¨a£¬b¡ÊR£©$ÔÚx=2´¦È¡µÃ¼«Ð¡Öµ$-\frac{4}{3}$£®
£¨1£©Çóf£¨x£©£»
£¨2£©Èô$\frac{1}{3}{x^3}+ax+b¡Ü{m^2}+m+\frac{10}{3}$¶Ôx¡Ê[-4£¬3]ºã³ÉÁ¢£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªÅ×ÎïÏßy2=2px£¨p£¾0£©µÄ½¹µãΪF£¬µãPΪÅ×ÎïÏßÉϵ͝µã£¬µãMΪÆä×¼ÏßÉϵ͝µã£¬Èô¡÷FPMΪ±ß³¤ÊÇ6µÄµÈ±ßÈý½ÇÐΣ¬Ôò´ËÅ×ÎïÏߵķ½³ÌΪy2=6x£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªº¯Êýf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬f£¨2£©=0£¬x£¾0ʱ£¬$\frac{xf¡ä£¨x£©-f£¨x£©}{{x}^{2}}$£¼0£¬Ôò²»µÈʽxf£¨x£©£¼0µÄ½â¼¯£¨-2£¬0£©¡È£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®±àдһ¸ö³ÌÐò¼ÆËã12+32+52+¡­+992£¬²¢»­³öÏàÓ¦µÄ³ÌÐò¿òͼ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ò»¸öսʿһ´ÎÉä»÷£¬ÃüÖл·Êý´óÓÚ8£¬´óÓÚ5£¬Ð¡ÓÚ4£¬Ð¡ÓÚ7£¬ÕâËĸöʼþÖУ¬»¥³âʼþÓУ¨¡¡¡¡£©
A£®2¶ÔB£®4¶ÔC£®6¶ÔD£®3¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ä³¼²²¡Ñо¿ËùÏëÖªµÀÎüÑÌÓ뻼·Î²¡ÊÇ·ñÓйأ¬ÓÚÊÇËæ»ú³éÈ¡11000Ãû³ÉÄêÈ˵÷²éÊÇ·ñ³éÑ̼°ÊÇ·ñ»¼Óзβ¡µÃµ½2¡Á2ÁÐÁª±í£¬¾­¼ÆËãµÃK2=5.231£¬ÒÑÖªÔÚ¼ÙÉèÎüÑÌÓ뻼·Î²¡Î޹صÄǰÌáÌõ¼þÏ£¬P£¨K2¡Ý3.841£©=0.05£¬P£¨K2¡Ý6.635£©=0.01£¬Ôò¸ÃÑо¿Ëù¿ÉÒÔ£¨¡¡¡¡£©
A£®ÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Óйء±
B£®ÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Î޹ء±
C£®ÓÐ99%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Óйء±
D£®ÓÐ99%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Î޹ء±

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª¼¯ºÏA=N£¬B={x¡ÊR|z=3+xi£¬ÇÒ|z|=5}£¨iΪÐéÊýµ¥Î»£©£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®4B£®-4C£®{4}D£®{-4}

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸