·ÖÎö £¨1£©¸ù¾ÝÏòÁ¿Æ½ÃæÁз½³Ì½â³öx£¬Çó³ö$\overrightarrow{a}-\overrightarrow{b}$µÄ×ø±ê¼´¿ÉµÃ³ö|$\overrightarrow{a}-\overrightarrow{b}$|£»
£¨2£©Áîcos£¼$\overrightarrow{a}£¬\overrightarrow{b}$£¾£¾0£¬½â³öx£¬ÔÙÈ¥µô$\overrightarrow{a}£¬\overrightarrow{b}$¹²ÏßµÄÇé¿ö¼´¿É£»
£¨3£©¸ù¾Ý|$\overrightarrow{a}$|=2¼ÆËãx£¬Éè$\overrightarrow{c}$=£¨m£¬n£©£¬Áз½³Ì×é½â³ö¼´¿É£®
½â´ð ½â£º£¨1£©Èô$\overrightarrow{a}¡Î\overrightarrow{b}$£¬Ôò-x-£¨2x+3£©x=0£¬½âµÃx=0»òx=-2£¬
µ±x=0ʱ£¬$\overrightarrow{a}-\overrightarrow{b}$=£¨-2£¬0£©£¬¡à|$\overrightarrow{a}-\overrightarrow{b}$|=2£¬
µ±x=-2ʱ£¬$\overrightarrow{a}-\overrightarrow{b}$=£¨2£¬-4£©£¬¡à|$\overrightarrow{a}-\overrightarrow{b}$|=2$\sqrt{5}$£®
£¨2£©Èô$\overrightarrow{a}$Óë$\overrightarrow{b}$¼Ð½ÇΪÈñ½Ç£¬Ôò$\overrightarrow{a}•\overrightarrow{b}$£¾0£¬¼´2x+3-x2£¾0£¬¡à-1£¼x£¼3£¬
ÓÉ£¨1£©¿ÉÖªµ±x=0ʱ£¬$\overrightarrow{a}¡Î\overrightarrow{b}$£¬´Ëʱ$\overrightarrow{b}=3\overrightarrow{a}$£¬$\overrightarrow{a}£¬\overrightarrow{b}$µÄ¼Ð½ÇΪ0£¬²»·ûºÏÌâÒ⣬ÉáÈ¥£¬
¡àxµÄȡֵ·¶Î§ÊÇ£¨-1£¬0£©¡È£¨0£¬3£©£®
£¨3£©¡ß|$\overrightarrow{a}$|=2£¬¡à1+x2=4£¬½âµÃx=¡À$\sqrt{3}$£¬
Éè$\overrightarrow{c}$=£¨m£¬n£©£¬Ôòm+nx=0£¬ÇÒm2+n2=1£¬
¡àµ±x=$\sqrt{3}$ʱ£¬$\left\{\begin{array}{l}{m+\sqrt{3}n=0}\\{{m}^{2}+{n}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{\sqrt{3}}{2}}\\{n=-\frac{1}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{m=-\frac{\sqrt{3}}{2}}\\{n=\frac{1}{2}}\end{array}\right.$£»
µ±x=-$\sqrt{3}$ʱ£¬$\left\{\begin{array}{l}{m-\sqrt{3}n=0}\\{{m}^{2}+{n}^{2}=1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{m=\frac{\sqrt{3}}{2}}\\{n=\frac{1}{2}}\end{array}\right.$»ò$\left\{\begin{array}{l}{m=-\frac{\sqrt{3}}{2}}\\{n=-\frac{1}{2}}\end{array}\right.$£¬
ËùÒÔµ±x=$\sqrt{3}$ʱ£¬$\overrightarrow{c}$µÄ×ø±êΪ£¨$\frac{\sqrt{3}}{2}$£¬-$\frac{1}{2}$£©»ò£¨-$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©£¬
µ±x=-$\sqrt{3}$ʱ£¬$\overrightarrow{c}$µÄ×ø±êΪ£¨$\frac{\sqrt{3}}{2}$£¬$\frac{1}{2}$£©»ò£¨-$\frac{\sqrt{3}}{2}$£¬-$\frac{1}{2}$£©£®
µãÆÀ ±¾Ì⿼²éÁËÆ½ÃæÏòÁ¿µÄ×ø±êÔËË㣬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2¶Ô | B£® | 4¶Ô | C£® | 6¶Ô | D£® | 3¶Ô |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Óйء± | |
| B£® | ÓÐ95%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Î޹ء± | |
| C£® | ÓÐ99%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Óйء± | |
| D£® | ÓÐ99%ÒÔÉϵİÑÎÕÈÏΪ¡°ÎüÑÌÓ뻼·Î²¡Î޹ء± |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | -4 | C£® | {4} | D£® | {-4} |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com