分析 (1)由条件利用诱导公式化简所给的三角函数式,可得结果.
(2)由条件利用诱导公式化简所给的三角函数式,可得f(α)的值.
解答 解:(1)$f(α)=\frac{-cosα(-sinα)tanα(-sinα)}{-sinα(-tanα)sinα}=-cosα$.
(2)因为$-\frac{31π}{3}=-5×2π-\frac{π}{3}$,
∴$f({-\frac{31π}{3}})=-cos(-\frac{31π}{3})=-cos(-5×2π-\frac{π}{3})=-cos\frac{π}{3}=-\frac{1}{2}$,
即 $f(α)=-\frac{1}{2}$.
点评 本题主要考查利用诱导公式进行化简求值,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $x∈[0,\frac{π}{2})$ | B. | $(\frac{π}{2},π]$ | C. | $[π,\frac{3π}{2})$ | D. | $(\frac{3π}{2},2π]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com