精英家教网 > 高中数学 > 题目详情
14.设i是虚数单位,若(x-i)i=y+2i,x,y∈R,则实数x+y=3.

分析 根据复数的对应关系求出x,y的值,求和即可.

解答 解:若(x-i)i=y+2i,
则1+xi=y+2i,
则x=2,y=1,
故x+y=3,
故答案为:3.

点评 本题考查了复数的运算,考查对应关系,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在正方体ABCD-A1B1C1D1中,E为DD1的中点,则下列直线中与平面ACE平行的是(  )
A.BA1B.BD1C.BC1D.BB1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知圆O:x2+y2=r2,点P(a,b)(ab≠0)是圆O内一点,直线l的方程为ax+by+r2=0,那么(  )
A.l与圆O相切B.l与圆O相离
C.l与圆O相交D.l与圆O相离或相切

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知P为抛物线y2=4x上一个动点,P到其准线的距离为d,Q为圆x2+(y-4)2=1上一个动点,d+|PQ|的最小值是(  )
A.2$\sqrt{5}$-1B.2$\sqrt{5}$-2C.$\sqrt{17}$-1D.$\sqrt{17}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且Sn=1-nan(n∈N*).
(1)计算a1,a2,a3,a4,并猜想数列{an}的通项公式;
(2)用数学归纳法证明(1)中数列{an}的通项公式成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知$f(α)=\frac{{sin(α-\frac{π}{2})cos(\frac{3π}{2}-α)tan(π+α)cos(\frac{π}{2}+α)}}{sin(2π-α)tan(-α-π)sin(-α-π)}$.
(1)化简f(α);
(2)若$α=-\frac{31π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=4x+ax2-$\frac{2}{3}$x3(x∈R)
(1)当a=1时,求函数的单调区间;
(2)若函数在区间[1,+∞)上是减函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=-x2+2xtanθ+1,$x∈[-\sqrt{3},1]$,其中$θ∈(-\frac{π}{2},\frac{π}{2})$.
(1)当$θ=-\frac{π}{4}$时,求函数f(x)的最大值与最小值;
(2)求θ的取值范围,使y=f(x)在区间$[-\sqrt{3},1]$上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)是定义在R上的偶函数,f(2)=0,x>0时,$\frac{xf′(x)-f(x)}{{x}^{2}}$<0,则不等式xf(x)<0的解集(-2,0)∪(2,+∞).

查看答案和解析>>

同步练习册答案