精英家教网 > 高中数学 > 题目详情
2.已知P为抛物线y2=4x上一个动点,P到其准线的距离为d,Q为圆x2+(y-4)2=1上一个动点,d+|PQ|的最小值是(  )
A.2$\sqrt{5}$-1B.2$\sqrt{5}$-2C.$\sqrt{17}$-1D.$\sqrt{17}$-2

分析 由抛物线定义知:P到准线距离等于P到焦点F的距离,连结圆心B与F,交圆于Q,FB交抛物线的点即为使d+|PQ|最小时P的位置.由此能求出结果.

解答 解:∵点P是抛物线y2=4x上的点,
点P到抛物线的准线的距离为d,
P到圆B:x2+(y-4)2=1上的动点Q的距离为|PQ|,
由抛物线定义知:P到准线的距离等于P到焦点F的距离,
∴如图,连结圆心B与F,交圆于Q,
FB交抛物线的点即为使d+|PQ|的最小时P的位置.
∴(d+|PQ|)min=|FQ|,
∵B(0,4),F(1,0),
∴|FB|=$\sqrt{1+16}$=$\sqrt{17}$,|BQ|=1.
∴|FQ|=$\sqrt{17}$-1.
故选:C.

点评 本题考查与抛物线有关的两条线段和的最小值的求法,是中档题,解题时要熟练掌握抛物线定义和性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow a,\overrightarrow b$满足$(2\overrightarrow a-\overrightarrow b)•\overrightarrow a=5$,且$|\overrightarrow a|=2,|\overrightarrow b|=3$,则向量$\overrightarrow a$与向量$\overrightarrow b$的夹角余弦值为(  )
A.1B.-1C.$\frac{1}{2}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设x,y满足约束条件$\left\{\begin{array}{l}{x-y+3≥0}\\{x+y≥0}\\{x≤2}\end{array}\right.$,若目标函数z=kx+y的最大值为9,则实数k的值为-5或2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一辆汽车由A地开往B地,它距离B地的路程s(km)与行驶时间t(h)的关系如图所示,如果汽车一直快速行驶,那么可以提前2小时到达B地.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,C1的参数方程为$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,C2的极坐标方程ρ2-2ρcosθ-3=0.
(Ⅰ)将C2的方程化为普通方程,并说明C2是哪种曲线.
(Ⅱ)C1与C2有两个公共点A,B,定点P的极坐标($\sqrt{2}$,$\frac{π}{4}$),求线段AB的长及定点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.定义对于两个量A和B,若A与B的取值范围相同,则称A和B能相互置换.例如f(x)=x+1,x∈[0,1]和$g(x)=2x-1,x∈[{1,\frac{3}{2}}]$,易知f(x)和g(x)能相互置换.
(1)已知f(x)=x2+bx+c对任意x∈Z恒有f(x)≥f(0),又$a=sinθ,θ∈[{-\frac{π}{2},\frac{π}{2}}]$,判断a与b能否相互置换.
(2)已知$f(x)=\frac{{{x^2}+kx+1}}{{{x^2}+x+1}}({x>0})$对于任意正数a,b,c,f(a),f(b),f(c)能构成三角形三边,又$g(x)={2^x}-\frac{3}{2},x∈[{m,n}]$,若k与g(x)能相互置换,求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设i是虚数单位,若(x-i)i=y+2i,x,y∈R,则实数x+y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知扇形OAB的周长是60cm,
(Ⅰ)若其面积是20cm2,求扇形OAB的圆心角的弧度数;
(Ⅱ)求扇形OAB的最大面积及此时弦长AB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$sinx+siny=\frac{1}{3}$,求μ=siny+cos2x的最值.

查看答案和解析>>

同步练习册答案