精英家教网 > 高中数学 > 题目详情
9.已知数列{an}的前n项和为Sn,且Sn=1-nan(n∈N*).
(1)计算a1,a2,a3,a4,并猜想数列{an}的通项公式;
(2)用数学归纳法证明(1)中数列{an}的通项公式成立.

分析 (1)利用已知条件通过n=1,2,3,4,分别求出a1,a2,a3,a4;然后猜想an的表达式.
(2)利用数学归纳法的证题步骤,证明猜想的正确性即可.

解答 解:(1)依题设Sn=1-nan可得a1=1-a1,即a1=$\frac{1}{2}$,a2=$\frac{1}{6}$=$\frac{1}{2×3}$,a3=$\frac{1}{12}$=$\frac{1}{3×4}$,a4=$\frac{1}{20}$=$\frac{1}{4×5}$;猜想an=$\frac{1}{n(n+1)}$.
(2)证明:①当n=1时,猜想显然成立.   
②假设n=k(k∈N*)时,猜想成立,
即ak=$\frac{1}{k(k+1)}$.  
那么,当n=k+1时,Sk+1=1-(k+1)ak+1
即Sk+ak+1=1-(k+1)ak+1. 又Sk=1-kak=$\frac{k}{k+1}$,
所以$\frac{k}{k+1}$+ak+1=1-(k+1)ak+1
从而ak+1=$\frac{1}{(k+1)(k+2)}$=$\frac{1}{(k+1)(k+1+1)}$
即n=k+1时,猜想也成立.       
故由①和②,可知猜想成立.

点评 本题考查数列的应用,数学归纳法的应用,考查计算能力以及逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在△ABC中,角A,B,C所对的边分别为a,b,c,c=$\sqrt{3}$,C=$\frac{π}{3}$,点D在边AB上,且$\overrightarrow{CD}$•$\overrightarrow{AB}$=0,则线段CD的最大值为$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.给出下列四个命题:①“若x+y≠5,则x≠2或y≠3”是假命题;②已知在△ABC中,“A<B”是“sinA<sinB”成立的充要条件;③若函数$f(x)=\left\{\begin{array}{l}({3a-1})x+4a\\{log_a}x\end{array}\right.\begin{array}{l}({x<1})\\({x≥1})\end{array}$,对任意的x1≠x2都有$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}$<0,则实数a的取值范围是$({\frac{1}{7},1})$;④若实数x,y∈[-1,1],则满足x2+y2≥1的概率为$1-\frac{π}{4}$.其中正确的命题的序号是②④(请把正确命题的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xOy中,C1的参数方程为$\left\{{\begin{array}{l}{x=1-\frac{{\sqrt{2}}}{2}t}\\{y=1+\frac{{\sqrt{2}}}{2}t}\end{array}}\right.$(t为参数),在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,C2的极坐标方程ρ2-2ρcosθ-3=0.
(Ⅰ)将C2的方程化为普通方程,并说明C2是哪种曲线.
(Ⅱ)C1与C2有两个公共点A,B,定点P的极坐标($\sqrt{2}$,$\frac{π}{4}$),求线段AB的长及定点P到A,B两点的距离之积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知Sn是数列{an}的前n项和,a1=1,a2=2,a3=3,数列{an+an+1+an+2}是公差为2的等差数列,则S24=(  )
A.110B.216C.214D.218

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设i是虚数单位,若(x-i)i=y+2i,x,y∈R,则实数x+y=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知等差数列{an},{bn}的前n项和分别为Sn,Tn,且$\frac{S_n}{T_n}=\frac{7n+2}{n+3}$,则 $\frac{a_4}{b_4}$=(  )
A.$\frac{51}{10}$B.$\frac{30}{7}$C.$\frac{65}{12}$D.$\frac{23}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在数列{an}中,若an2-a2n+1=p(n≥1,n∈N*,p为常数),则称{an}为“等方差数列”,下列是对“等方差数列”的判断:
①若{an}是等方差数列,则{an2}是等差数列;
②{(-1)n}是等方差数列;
③若{an}是等方差数列,则{akn}(k∈N*,k为常数)也是等方差数列.
其中真命题的序号为①②③(将所有真命题的序号填在横线上).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.函数$f(x)={log_{\frac{1}{2}}}(10-ax)$,已知f(3)=-2.
(1)求$f(x)={log_{\frac{1}{2}}}(10-ax)$的定义域,判断并证明函数f(x)的单调性;
(2)若不等式$f(x)≥{(\frac{1}{2})^x}+m$对于x∈[3,4]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案