分析 (1)利用已知条件通过n=1,2,3,4,分别求出a1,a2,a3,a4;然后猜想an的表达式.
(2)利用数学归纳法的证题步骤,证明猜想的正确性即可.
解答 解:(1)依题设Sn=1-nan可得a1=1-a1,即a1=$\frac{1}{2}$,a2=$\frac{1}{6}$=$\frac{1}{2×3}$,a3=$\frac{1}{12}$=$\frac{1}{3×4}$,a4=$\frac{1}{20}$=$\frac{1}{4×5}$;猜想an=$\frac{1}{n(n+1)}$.
(2)证明:①当n=1时,猜想显然成立.
②假设n=k(k∈N*)时,猜想成立,
即ak=$\frac{1}{k(k+1)}$.
那么,当n=k+1时,Sk+1=1-(k+1)ak+1,
即Sk+ak+1=1-(k+1)ak+1. 又Sk=1-kak=$\frac{k}{k+1}$,
所以$\frac{k}{k+1}$+ak+1=1-(k+1)ak+1,
从而ak+1=$\frac{1}{(k+1)(k+2)}$=$\frac{1}{(k+1)(k+1+1)}$
即n=k+1时,猜想也成立.
故由①和②,可知猜想成立.
点评 本题考查数列的应用,数学归纳法的应用,考查计算能力以及逻辑推理能力.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 110 | B. | 216 | C. | 214 | D. | 218 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{51}{10}$ | B. | $\frac{30}{7}$ | C. | $\frac{65}{12}$ | D. | $\frac{23}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com