精英家教网 > 高中数学 > 题目详情

函数f(x)=x+cosx的大致图象是________.


分析:先研究函数的奇偶性知它是非奇非偶函数,从而排除两个选项,再看此函数与直线y=x的交点情况即可作出正确的判断.
解答:由于f(x)=x+cosx,
∴f(-x)=-x+cosx,
∴f(-x)≠f(x),且f(-x)≠-f(x),
故此函数是非奇非偶函数,排除③④;
又当x=时,x+cosx=x,
即f(x)的图象与直线y=x的交点中有一个点的横坐标为,排除①.
故答案为②.
点评:本题考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合的思维能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)(x∈R)为奇函数,且存在反函数f-1(x)(与f(x)不同),F(x)=
2f(x)-2f-1(x)
2f(x)+2f-1(x)
,则下列关于函数F(x)的奇偶性的说法中正确的是(  )
A、F(x)是奇函数非偶函数
B、F(x)是偶函数非奇函数
C、F(x)既是奇函数又是偶函数
D、F(x)既非奇函数又非偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)、g(x),下列说法正确的是(  )
A、f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数B、f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数C、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数D、f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

设函数f(x)的定义域为A,若存在非零实数t,使得对于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),则称f(x)为C上的t低调函数.如果定义域为[0,+∞)的函数f(x)=-|x-m2|+m2,且 f(x)为[0,+∞)上的10低调函数,那么实数m的取值范围是


  1. A.
    [-5,5]
  2. B.
    [-数学公式数学公式]
  3. C.
    [-数学公式数学公式]
  4. D.
    [-数学公式数学公式]

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案