精英家教网 > 高中数学 > 题目详情
已知定义域为R的函数f(x)在区间(-∞,5)上单调递减,对任意实数t,都有f(5+t)=f(5-t),那么下列式子一定成立的是( )
A.f(-1)<f(9)<f(13)
B.f(13)<f(9)<f(-1)
C.f(9)<f(-1)<f(13)
D.f(13)<f(-1)<f(9)
【答案】分析:由f(5+t)=f(5-t),知函数f(x)的图象关于x=5对称,然后利用在区间(-∞,5)上单调递减,可得函数在R上的单调性,从而可得函数值的大小关系.
解答:解:∵f(5+t)=f(5-t)∴函数f(x)的图象关于x=5对称
∴f(-1)=f(11),
∵函数f(x)在区间(-∞,5)上单调递减,
∴f(x)在(5,+∞)上为单调递增.
∴f(9)<f(11)<f(13),
即f(9)<f(-1)<f(13).
故选C.
点评:本题考查了函数的单调性及单调区间,同时考查了函数图象的对称性,注意数形结合,是个基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2010•石家庄二模)已知定义域为R的函数f(x)在(1,+∞)上为减函数,且函数y=f(x+1)为偶函数,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(x)f(x+2)=5,若f(2)=3,则f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)在(4,+∞)上为减函数,且函数y=f(x)的对称轴为x=4,则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)=
-2x+a2x+1
是奇函数
(1)求a值;
(2)判断并证明该函数在定义域R上的单调性;
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围;
(4)设关于x的函数F(x)=f(4x-b)+f(-2x+1)有零点,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义域为R的函数f(x)满足f(4-x)=-f(x),当x<2时,f(x)单调递减,如果x1+x2>4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值(  )

查看答案和解析>>

同步练习册答案