精英家教网 > 高中数学 > 题目详情

【题目】已知函数 .

(1)当处的切线与直线垂直时,方程有两相异实数根,求的取值范围;

(2)若幂函数的图象关于轴对称,求使不等式上恒成立的的取值范围.

【答案】(1) ;(2) .

【解析】试题分析:(1)方程有两相异实数根等价于有两个零点;(2)不等式上恒成立,即求的最小值

,对a分类讨论研究函数的单调性,从而确定出函数的最值.

试题解析:

(Ⅰ)由题设可得,令,

,

0

递减

极小值

递增

有两个不等实根 .

(Ⅱ)由题设有,令

,令

在单调递增

,即时,

所以内单调递增, ,所以

②当,即时,由内单调递增,

使得

0

递减

极小值

递增

所以的最小值为

,所以

因此,要使当时, 恒成立,只需,即即可.

解得,此时由,可得

以下求出a的取值范围.

所以上单调递减,从而

综上①②所述, 的取值范围

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间;

2)设,不等式恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形ABCD与等边PAD所在的平面相互垂直,AD=2,∠DAB=60°.

(1)证明:ADPB

求三棱锥CPAB的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数),且曲线在点处的切线平行于轴.

(1)求的值;

(2)求函数的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的一条对称轴为,且最高点的纵坐标是

(1)求的最小值及此时函数的最小正周期、初相;

(2)在(1)的情况下,设,求函数上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块半圆形空地,开发商计划建一个矩形游泳池及其矩形附属设施,并将剩余空地进行绿化,园林局要求绿化面积应最大化.其中半圆的圆心为,半径为,矩形的一边在直径上,点在圆周上, 在边上,且,设.

(1)记游泳池及其附属设施的占地面积为,求的表达式

2)当为何值时,能符合园林局的要求?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南京市江北新区计划在一个竖直长度为20米的瀑布正前方修建一座观光电梯。如图所示,瀑布底部距离水平地面的高度60米,电梯上设有一个安全拍照口 上升的最大高度为60米。设距离水平地面的高度为米, 处拍照瀑布的视角。摄影爱好者发现,要使照片清晰,视角不能小于

1)当米时,视角恰好为,求电梯和山脚的水平距离

2)要使电梯拍照口的高度52米及以上时,拍出的照片均清晰,请求出电梯和山脚的水平距离的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了让贫困地区的孩子们过一个温暖的冬天,某校阳光志愿者社团组织“这个冬天不再冷”冬衣募捐活动,共有50名志愿者参与.志愿者的工作内容有两项:①到各班做宣传,倡议同学们积极捐献冬衣;②整理、打包募捐上来的衣物.每位志愿者根据自身实际情况,只参与其中的某一项工作.相关统计数据如下表所示:

(1)如果用分层抽样的方法从参与两项工作的志愿者中抽取5人,再从这5人中选2人,那么“至少有1人是参与班级宣传的志愿者”的概率是多少?

(2)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用表示所选志愿者中的女生人数,写出随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为实常数).

)若的极值点,求实数的取值范围.

)讨论函数上的单调性.

)若存在,使得成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案