精英家教网 > 高中数学 > 题目详情
已知,函数(其中为自然对数的底数).
(1)求函数在区间上的最小值;
(2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.
(1)当时,函数在区间上无最小值;
时,函数在区间上的最小值为
时,函数在区间上的最小值为
(2) 不存在,使曲线在点处的切线与轴垂直
 (1)解:∵,∴
,得
①若,则在区间上单调递增,此时函数无最小值.
②若,当时,,函数在区间上单调递减,
时,,函数在区间上单调递增,
所以当时,函数取得最小值
③若,则,函数在区间上单调递减,
所以当时,函数取得最小值
综上可知,当时,函数在区间上无最小值;
时,函数在区间上的最小值为
时,函数在区间上的最小值为
(2)解:∵


由(1)可知,当时,
此时在区间上的最小值为,即


曲线在点处的切线与轴垂直等价于方程有实数解.
,即方程无实数解.
故不存在,使曲线在点处的切线与轴垂直.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数.
(1)求在区间的最小值;(2)求证:若,则不等式对于任意的恒成立;(3)求证:若,则不等式对于任意的恒成立.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若有极值,求b的取值范围;
(2)若处取得极值时,当恒成立,求c的取值范围;
(3)若处取得极值时,证明:对[-1,2]内的任意两个值都有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)若函数上是减函数,求实数的取值范围;
(Ⅱ)令,是否存在实数,使得当时,函数的最小值是?若存在,求出实数的值;若不存在,说明理由.
(Ⅲ)当时,证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若函数的图象在点处的切线与直线垂直,
求函数的单调区间;(Ⅱ)求函数在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数的两条切线PMPN,切点分别为MN.
(I)当时,求函数的单调递增区间;
(II)设|MN|=,试求函数的表达式;
(III)在(II)的条件下,若对任意的正整数,在区间内,总存在m+1个数使得不等式成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数).
(1)讨论函数f(x)的单调性;
(2)若,方程f (x) ="2" a x有惟一解时,求的值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知函数(x>0)在x = 1处
取得极值–3–c,其中a,b,c为常数。
(1)试确定a,b的值;(6分)
(2)讨论函数f(x)的单调区间;(4分)
(3)若对任意x>0,不等式恒成立,求c的取值范围。(3分)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(I)已知函数上是增函数,求得取值范围;
(II)在(I)的结论下,设,求函数的最小值.

查看答案和解析>>

同步练习册答案