精英家教网 > 高中数学 > 题目详情
已知函数
(1)若有极值,求b的取值范围;
(2)若处取得极值时,当恒成立,求c的取值范围;
(3)若处取得极值时,证明:对[-1,2]内的任意两个值都有
(1)(2) (3)见解析
(1),                                                                                                               (1分)
,                                                                                                         (2分)
得1-12b>0即                                                                                        (4分)
(2)∴3-1+b=0,得b=-2,            (5分)
,得,                               (6分)可以计算得到,                                        (7分)
所以,得到                              (8分)
(3)可以计算得到,               (10分)
∴对[-1,2]内的任意两个值都有(12分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,点.
(Ⅰ)若,求函数的单调递增区间;
(Ⅱ)若函数的导函数满足:当时,有恒成立,求函数的解析表达式;
(Ⅲ)若,函数处取得极值,且,证明: 与不可能垂直。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)设函(1)当时,求的极值;(2)当时,求的单调区间;(3若对任意,恒有成立,求的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知二次函数为常数);.若直线l1、l2与函数f(x)的图象以及l1,y轴与函数f(x)的图象所围成的封闭图形如阴影所示.
(Ⅰ)求a、b、c的值;
(Ⅱ)求阴影面积S关于t的函数S(t)的解析式;
(Ⅲ)若问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,函数(其中为自然对数的底数).
(1)求函数在区间上的最小值;
(2)是否存在实数,使曲线在点处的切线与轴垂直? 若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知函数,其中
(1)当满足什么条件时,取得极值?
(2)已知,且在区间上单调递增,试用表示出的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数单调递减,
(I)求a的值;
(II)是否存在实数b,使得函数的图象恰有3个交点,若的取值范围数b的值;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,在(-∞,-1),(2,+∞)上单调递增,在(-1,2)上单调递减,当且仅当x>4时,
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若函数与函数f(x)、g(x)的图象共有3个交点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数是R上可导的偶函数,,则的值为(  ).
A.B.C.D.

查看答案和解析>>

同步练习册答案