(本小题满分10分,坐标系与参数方程选讲)
己知在平面直角坐标系
中,圆
的参数方程为
(
为参数).以原点
为极点,以
轴的非负半轴为极轴的极坐标系中,直线
的极坐标方程为
,直线
与圆
相交于
两点,求弦
的长.
科目:高中数学 来源:2014-2015学年江苏省泰州市高三上学期期末考试理科数学试卷(解析版) 题型:解答题
(本题满分16分)如图,在平面直角坐标系
中,离心率为
的椭圆![]()
的左顶点为
,过原点
的直线(与坐标轴不重合)与椭圆
交于
两点,直线
分别与
轴交于
两点.若直线
斜率为
时,
.
![]()
(1)求椭圆
的标准方程;
(2)试问以
为直径的圆是否经过定点(与直线
的斜率无关)?请证明你的结论.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年江苏省泰州市高三上学期期末考试理科数学试卷(解析版) 题型:填空题
若
是两个相交平面,则在下列命题中,真命题的序号为 .(写出所有真命题的序号)
①若直线
,则在平面
内,一定不存在与直线
平行的直线.
②若直线
,则在平面
内,一定存在无数条直线与直线
垂直.
③若直线
,则在平面
内,不一定存在与直线
垂直的直线.
④若直线
,则在平面
内,一定存在与直线
垂直的直线.
查看答案和解析>>
科目:高中数学 来源:2014-2015学年江苏省常州市高三上学期期末调研测试理科数学试卷(解析版) 题型:解答题
(本小题满分16分)已知数列
(
,
)满足
,
其中
,
.
(1)当
时,求
关于
的表达式,并求
的取值范围;
(2)设集合
.
①若
,
,求证:
;
②是否存在实数
,
,使
,
,
都属于
?若存在,请求出实数
,
;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com