精英家教网 > 高中数学 > 题目详情
.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线与椭圆C交于两点,点,且,求直线的方程.
(1)
(2)直线的方程:
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)椭圆的左、右焦点分别为,过的直线 与椭圆交于两点。
(Ⅰ)若点在圆为椭圆的半焦距)上,且,求椭圆的离心率;
  (Ⅱ)若函数的图象,无论为何值时恒过定点,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)已知点P(4,4),圆C与椭圆E:
有一个公共点A(3,1),F1F2分别是椭圆的左.右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某公园的大型中心花园的边界为椭圆,花园内种植各种花草. 为增强观赏性,在椭圆内以其
中心为直角顶点且关于中心对称的两个直角三角形内种植名贵花草(如图),并以该直角三角
形斜边开辟观赏小道(其中的一条为线段). 某园林公司承接了该中心花园的施工建设,
在施工时发现,椭圆边界上任意一点到椭圆两焦点的距离和为4(单位:百米),且椭圆上点
到焦点的最近距离为1(单位:百米).
(Ⅰ)以椭圆中心为原点建立如图的坐标系,求该椭圆的标准方程;
(Ⅱ)请计算观赏小道的长度(不计小道宽度)的最大值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
在直角坐标系中,椭圆的左、右焦点分别为. 其中也是抛物线的焦点,点在第一象限的交点,且
(Ⅰ)求的方程;
(Ⅱ)若过点的直线交于不同的两点.之间,试求面积之比的取值范围.(O为坐标原点)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

((本题满分14分)
已知椭圆的两个焦点,且椭圆短轴的两个端点与构成正三角形.
(1)求椭圆的方程;
(2)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,若在轴上存在定点E(,0),使恒为定值,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.椭圆与直线交于两点,且,其
为坐标原点。
1)求的值;
2)若椭圆的离心率满足,求椭圆长轴的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知的顶点B、C在椭圆上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则的周长是.           
A.             B. 6            C.             D. 12   

查看答案和解析>>

同步练习册答案