精英家教网 > 高中数学 > 题目详情
(本小题满分15分)已知点P(4,4),圆C与椭圆E:
有一个公共点A(3,1),F1F2分别是椭圆的左.右焦点,直线PF1与圆C相切.

(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求的范围.
解:(Ⅰ)点A代入圆C方程,           得.  ∵m<3,∴m=1.
C.设直线PF1的斜率为k
PF1,即
∵直线PF1与圆C相切,∴
解得.当k时,直线PF1x轴的交点横坐标为,不合题意舍去.
k时,直线PF1x轴的交点横坐标为-4,
c=4.F1(-4,0),F2(4,0).2aAF1AF2a2=18,
b2=2.椭圆E的方程为:
(Ⅱ),设Qxy),
.∵,即
,∴-18≤6xy≤18.
的取值范围是[0,36].
的取值范围是[-6,6].
的取值范围是[-12,0].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

、已知椭圆的离心率是,长轴长是为6,
(1)求椭圆的方程;
(2)设直线交于两点,已知点的坐标为,求直线的方程。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆短轴的一个端点,离心率.过作直线与椭圆交于另一点,与轴交于点不同于原点),点关于轴的对称点为,直线轴于点
(Ⅰ)求椭圆的方程;
(Ⅱ)求 的值.
[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

本小题满分16分)
如图,已知圆是椭圆的内接△的内切圆, 其中为椭圆的左顶点.

(1)求圆的半径;
2)过点作圆的两条切线交椭圆于两点,


 
判断直线与圆的位置关系并说明理由.

         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线与椭圆C交于两点,点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知方程表示椭圆,则的取值范围为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果椭圆上一点到焦点的距离等于6,则点到另一个焦点的距离为____

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆经过点,离心率为,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

从一块短轴长为2b的椭圆形玻璃镜中划出一块面积最大的矩形,其面积的取值范围是[3b2,4b2],则这一椭圆离心率e的取值范围是 (     )
A.B.C.D.

查看答案和解析>>

同步练习册答案