精英家教网 > 高中数学 > 题目详情
((本题满分14分)
已知椭圆的两个焦点,且椭圆短轴的两个端点与构成正三角形.
(1)求椭圆的方程;
(2)过点(1,0)且与坐标轴不平行的直线与椭圆交于不同两点P、Q,若在轴上存在定点E(,0),使恒为定值,求的值.
解:(1)由题意知 =又∵椭圆的短轴的两个端点与F构成正三角形
="1  " 从而   
∴椭圆的方程为="1" ………………3分
(2)设直线的斜率为,则的方程为
  消得   …………5分
,则由韦达定理得  
      …………7分

=
=
=
=  ……………………………13
要使上式为定值须
解得 故时,为定值………………………14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本小题满分13分)
已知椭圆为其左、右焦点,为椭圆上任一点,的重心为,内心,且有(其中为实数)
(1)求椭圆的离心率
(2)过焦点的直线与椭圆相交于点,若面积的最大值为3,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆短轴的一个端点,离心率.过作直线与椭圆交于另一点,与轴交于点不同于原点),点关于轴的对称点为,直线轴于点
(Ⅰ)求椭圆的方程;
(Ⅱ)求 的值.
[]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆的左、右焦点分别为,离心率,右准线方程为
(I)求椭圆的标准方程;
(II)过点的直线与该椭圆交于MN两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
分别是椭圆的左右焦点。
(1)设椭圆上点到两点距离和等于,写出椭圆的方程和焦点坐标;
(2)设是(1)中所得椭圆上的动点,求线段的中的轨迹方程;
(3)设点是椭圆上的任意一点,过原点的直线与椭圆相交于两点,当直线 , 的斜率都存在,并记为 ,试探究的值是否与点及直线有关.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线与椭圆C交于两点,点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆和双曲线有相同的焦点F1、F2,点P为椭圆和双曲线的一个交点,则|PF1|·|PF2|的值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知是椭圆上一点,为其中一个焦点,则的最小值为_________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是         

查看答案和解析>>

同步练习册答案