精英家教网 > 高中数学 > 题目详情
(本题满分12分)椭圆的左、右焦点分别为,过的直线 与椭圆交于两点。
(Ⅰ)若点在圆为椭圆的半焦距)上,且,求椭圆的离心率;
  (Ⅱ)若函数的图象,无论为何值时恒过定点,求的取值范围。
解:(I)∵点在圆上,为一直角三角形

由椭圆的定义知: 
………………………………5分
(II)∵函数 的图象恒过点
  点, 
①若轴,则
 …………7分[
②若轴不垂直,设直线的斜率为,则的方程为
消去…………(*)
方程(*)有两个不同的实根.
设点,则是方程(*)的两个根
 ………………9分
 

 
………………11分
由①②知 ………………………………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

((本小题满分13分)
已知椭圆为其左、右焦点,为椭圆上任一点,的重心为,内心,且有(其中为实数)
(1)求椭圆的离心率
(2)过焦点的直线与椭圆相交于点,若面积的最大值为3,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
已知点,过点作抛物线的切线,切点在第二象限,如图.(Ⅰ)求切点的纵坐标;
(Ⅱ)若离心率为的椭圆恰好经过切点,设切线交椭圆的另一点为,记切线的斜率分别为,若,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知为椭圆的左、右顶点,为其右焦点,是椭圆上异于的动点,且面积的最大值为
(Ⅰ)求椭圆的方程及离心率;
(Ⅱ)直线与椭圆在点处的切线交于点,当直线绕点转动时,试判断以
为直径的圆与直线的位置关系,并加以证明.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(本小题满分12分)已知椭圆C:的左、右顶点的坐标分别为,,离心率
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为,,若直线与椭圆交于两点,证明直线与直线的交点在直线上。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

.已知椭圆C:的离心率为,椭圆C上任意一点到椭圆两个焦点的距离之和为6.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设直线与椭圆C交于两点,点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
已知椭圆经过点,离心率为,动点
(Ⅰ)求椭圆的标准方程;
(Ⅱ)求以OM为直径且被直线截得的弦长为2的圆的方程;
(Ⅲ)设F是椭圆的右焦点,过点F作OM的垂线与以OM为直径的圆交于点N,证明线段ON的长为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆和双曲线有相同的焦点F1、F2,点P为椭圆和双曲线的一个交点,则|PF1|·|PF2|的值是       

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的短轴长为2,长轴是短轴的2倍,则椭圆的中心到其准线的距离是         

查看答案和解析>>

同步练习册答案