分析 作出不等式组对应的平面区域,利用目标函数的几何意义,利用平移法进行求解即可.
解答
解:作出x,y满足约束条件$\left\{\begin{array}{l}{-1≤2x+y≤1}\\{2≤x-y≤3}\end{array}\right.$的可行域,
如图:$\left\{\begin{array}{l}{2x+y=1}\\{2=x-y}\end{array}\right.$解得A(1,-1),
作出直线l:x+y+1=0,平移直线l,当它过点A(1,-1)时,
z=x+y+1取得最大值1.
故答案为:1.
点评 本题主要考查线性规划的应用,根据条件结合目标函数的几何意义,利用平移法是解决本题的关键.
科目:高中数学 来源: 题型:解答题
| 组数 | 分组(单位:岁) | 频数 | 频率 |
| 1 | [20,25) | 5 | 0.05 |
| 2 | [25,30) | 20 | 0.20 |
| 3 | [30,35) | a | 0.35 |
| 4 | [35,40) | 30 | b |
| 5 | [40,45] | 10 | 0.10 |
| 合计 | n | 1.00 | |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 价格x(百元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 销量y(件/天) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 贷款期限 | 6个月 | 12个月 | 18个月 | 24个月 | 36个月 |
| 频数 | 20 | 40 | 20 | 10 | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 与平面A1DE垂直的直线必与直线BM垂直 | |
| B. | 异面直线BM与A1E所成角是定值 | |
| C. | 一定存在某个位置,使DE⊥MO | |
| D. | 三棱锥A1-ADE外接球半径与棱AD的长之比为定值 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com