10£®Èçͼ1£¬Ôڱ߳¤Îª2µÄÁâÐÎABCDÖУ¬¡ÏBAD=60¡ã£¬½«¡÷BCDÑØ¶Ô½ÇÏßBDÕÛÆðµ½¡÷B'CDµÄλÖã¬Ê¹Æ½ÃæBC'D¡ÍÆ½ÃæABD£¬EÊÇBDµÄÖе㣬FA¡ÍÆ½ÃæABD£¬ÇÒFA=2$\sqrt{3}$£¬Èçͼ2£®
£¨1£©ÇóÖ¤£ºFA¡ÎÆ½ÃæBC'D£»
£¨2£©ÇóÆ½ÃæABDÓëÆ½ÃæFBC'Ëù³É½ÇµÄÓàÏÒÖµ£»
£¨3£©ÔÚÏß¶ÎADÉÏÊÇ·ñ´æÔÚÒ»µãM£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£¿Èô´æÔÚ£¬Çó$\frac{AM}{AD}$µÄÖµ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÌâÒâ¿ÉµÃC¡äE¡ÍBD£¬ÓÖÆ½ÃæBC'D¡ÍÆ½ÃæABD£¬ÇÒÆ½ÃæBC'D¡ÉÆ½ÃæABD=BD£¬ÔÙÓÉ̾̾´¹Ö±µÄÐÔÖʿɵÃC¡äE¡ÍABD£¬½áºÏÒÑÖª¿ÉµÃFA¡ÎC¡äE£¬ÓÉÏßÃæÆ½ÐеÄÅж¨¿ÉµÃFA¡ÎÆ½ÃæBC'D£»
£¨2£©ÒÔDBËùÔÚÖ±ÏßΪxÖᣬAEËùÔÚÖ±ÏßΪyÖᣬEC¡äËùÔÚÖ±ÏßΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬Çó³öËùÓõãµÄ×ø±ê£¬ÇóµÃÆ½ÃæFBC¡äÓëÆ½ÃæABDµÄÒ»¸ö·¨ÏòÁ¿£¬ÓÉÁ½·¨ÏòÁ¿Ëù³É½ÇµÄÓàÏÒÖµ¿ÉµÃÆ½ÃæABDÓëÆ½ÃæFBC'Ëù³É½ÇµÄÓàÏÒÖµ£»
£¨3£©¼ÙÉèÔÚÏß¶ÎADÉÏ´æÔÚM£¨x£¬y£¬z£©£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£¬ÓÉ$\overrightarrow{AM}=¦Ë\overrightarrow{AD}$ÇóµÃMµÄ×ø±ê£¬µÃµ½$\overrightarrow{C¡äM}$£¬ÓÉ$\overrightarrow{m}•\overrightarrow{C¡äM}=0$¼ÓÒÔÅжϣ®

½â´ð £¨1£©Ö¤Ã÷£º¡ßBC=CD£¬EΪBDµÄÖе㣬¡àC¡äE¡ÍBD£¬
ÓÖÆ½ÃæBC'D¡ÍÆ½ÃæABD£¬ÇÒÆ½ÃæBC'D¡ÉÆ½ÃæABD=BD£¬
¡àC¡äE¡ÍABD£¬
¡ßFA¡ÍÆ½ÃæABD£¬¡àFA¡ÎC¡äE£¬¶øC¡äE?Æ½ÃæBC'D£¬FA?Æ½ÃæBC'D£¬
¡àFA¡ÎÆ½ÃæBC'D£»
£¨2£©½â£ºÒÔDBËùÔÚÖ±ÏßΪxÖᣬAEËùÔÚÖ±ÏßΪyÖᣬEC¡äËùÔÚÖ±ÏßΪzÖὨÁ¢¿Õ¼äÖ±½Ç×ø±êϵ£¬
ÔòB£¨1£¬0£¬0£©£¬A£¨0£¬$-\sqrt{3}$£¬0£©£¬D£¨-1£¬0£¬0£©£¬F£¨0£¬-$\sqrt{3}$£¬$2\sqrt{3}$£©£¬
C¡ä£¨0£¬0£¬$\sqrt{3}$£©£¬
¡à$\overrightarrow{BF}=£¨-1£¬-\sqrt{3}£¬2\sqrt{3}£©$£¬$\overrightarrow{BC¡ä}=£¨-1£¬0£¬\sqrt{3}£©$£®
ÉèÆ½ÃæFBC¡äµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{m}=£¨x£¬y£¬z£©$£¬
Ôò$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{BF}=-x-\sqrt{3}y+2\sqrt{3}z=0}\\{\overrightarrow{m}•\overrightarrow{BC¡ä}=-x+\sqrt{3}z=0}\end{array}\right.$£¬È¡z=1£¬Ôò$\overrightarrow{m}=£¨\sqrt{3}£¬1£¬1£©$£®
ÓÖÆ½ÃæABDµÄÒ»¸ö·¨ÏòÁ¿Îª$\overrightarrow{n}=£¨0£¬1£¬1£©$£®
¡àcos£¼$\overrightarrow{m}£¬\overrightarrow{n}$£¾=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{2}{\sqrt{5}¡Á\sqrt{2}}=\frac{\sqrt{10}}{5}$£®
ÔòÆ½ÃæABDÓëÆ½ÃæFBC'Ëù³É½ÇµÄÓàÏÒֵΪ$\frac{\sqrt{10}}{5}$£»
£¨3£©½â£ºÏß¶ÎADÉϲ»´æµãM£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£®
¼ÙÉèÔÚÏß¶ÎADÉÏ´æÔÚM£¨x£¬y£¬z£©£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£¬
Éè$\overrightarrow{AM}=¦Ë\overrightarrow{AD}$£¬Ôò£¨x£¬y$+\sqrt{3}$£¬z£©=¦Ë£¨-1£¬$\sqrt{3}$£¬0£©=£¨-¦Ë£¬$\sqrt{3}¦Ë$£¬0£©£¬
¡àx=-¦Ë£¬y=$\sqrt{3}£¨¦Ë-1£©$£¬z=0£®
Ôò$\overrightarrow{C¡äM}$=£¨-¦Ë£¬$\sqrt{3}£¨¦Ë-1£©$£¬-$\sqrt{3}$£©£®
ÓÉ$\overrightarrow{m}•\overrightarrow{C¡äM}=0$£¬µÃ$-\sqrt{3}¦Ë+\sqrt{3}¦Ë-\sqrt{3}=0$£¬¼´$-\sqrt{3}=0$´íÎó£®
¡àÏß¶ÎADÉϲ»´æµãM£¬Ê¹µÃC'M¡ÍÆ½ÃæFBC£®

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÆ½ÃæÆ½ÐеÄÅж¨£¬¿¼²é¿Õ¼äÏëÏóÄÜÁ¦ºÍ˼άÄÜÁ¦£¬ÑµÁ·ÁËÀûÓÿռäÏòÁ¿Çó½â¶þÃæ½ÇµÄÆ½Ãæ½Ç£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÒÑÖªËıßÐÎABCDΪÌÝÐΣ¬AB¡ÎCD£¬lΪ¿Õ¼äÒ»Ö±Ïߣ¬Ôò¡°l´¹Ö±ÓÚÁ½ÑüAD£¬BC¡±ÊÇ¡°l´¹Ö±ÓÚÁ½µ×AB£¬CD¡±µÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³äÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®cos70¡ãsin50¡ã-cos200¡ãsin40¡ãµÄֵΪ£¨¡¡¡¡£©
A£®$-\frac{{\sqrt{3}}}{2}$B£®$-\frac{1}{2}$C£®$\frac{1}{2}$D£®$\frac{{\sqrt{3}}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®¾Ýͳ¼Æ£¬Ä³³ÇÊеĻð³µÕ¾´ºÔËÆÚ¼äÈÕ½ÓËÍÂÿÍÈËÊýX£¨µ¥Î»£ºÍò£©·þ´ÓÕý̬·Ö²¼X¡«N£¨6£¬0.82£©£¬ÔòÈÕ½ÓËÍÈËÊýÔÚ6Íòµ½6.8ÍòÖ®¼äµÄ¸ÅÂÊΪ£¨¡¡¡¡£©
£¨P£¨|X-¦Ì|£¼¦Ò£©=0.6826£¬P£¨|X-¦Ì|£¼2¦Ò£©=0.9544£¬P£¨|X-¦Ì|£¼3¦Ò£©=0.9974£©
A£®0.6826B£®0.9544C£®0.9974D£®0.3413

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Éèx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{-1¡Ü2x+y¡Ü1}\\{2¡Üx-y¡Ü3}\end{array}\right.$£¬Ôòx+y+1µÄ×î´óֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®ÊýÁÐ{an}ÊǵȱÈÊýÁУ¬Âú×ãa2=2£¬a2+a4+a6=14£¬Ôòa6=8£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªÊýÁÐ{an}ÊǵȱÈÊýÁУ¬Ôò¡°a2£¾a1¡±ÊÇ¡°ÊýÁÐ{an}ΪµÝÔöÊýÁС±µÄ£¨¡¡¡¡£©
A£®³ä·Ö¶ø²»±ØÒªÌõ¼þB£®±ØÒª¶ø²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÒÑ֪ʵÊýa£¬b£¬cÂú×ãa£¬b£¬c¡ÊR+£®
£¨¢ñ£©Èôab=1£¬Ö¤Ã÷£º£¨$\frac{1}{a}$+$\frac{1}{b}$£©2¡Ý4£»
£¨¢ò£©Èôa+b+c=3£¬ÇÒ$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$¡Ü|2x-1|-|x-2|+3ºã³ÉÁ¢£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®Èôz=f£¨x£¬y£©³ÆÎª¶þÔªº¯Êý£¬ÒÑÖªf£¨x£¬y£©=ax+by£¬$\left\{\begin{array}{l}{f£¨1£¬-2£©-5¡Ü0}\\{f£¨1£¬1£©-4¡Ü0}\\{f£¨3£¬1£©-10¡Ý0}\end{array}\right.$£¬Ôòz=f£¨-1£¬1£©µÄ×î´óÖµµÈÓÚ£¨¡¡¡¡£©
A£®2B£®-2C£®3D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸