精英家教网 > 高中数学 > 题目详情
18.据统计,某城市的火车站春运期间日接送旅客人数X(单位:万)服从正态分布X~N(6,0.82),则日接送人数在6万到6.8万之间的概率为(  )
(P(|X-μ|<σ)=0.6826,P(|X-μ|<2σ)=0.9544,P(|X-μ|<3σ)=0.9974)
A.0.6826B.0.9544C.0.9974D.0.3413

分析 根据正态分布的对称性得出答案.

解答 解:∵随机变量X服从正态分布X~N(6,0.82),
∴μ=6,σ=0.8,
∴P(5.2<X<6.8)=0.6826,
∴P(6<x<6.8)=$\frac{1}{2}$P(5.2<X<6.8)=0.3413.
故选D.

点评 本题考查了正态分布的对称关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
 组数分组(单位:岁)频数频率
[20,25)50.05
 2[25,30)200.20
 3[30,35)a0.35
 4[35,40)30b
 5[40,45]100.10
合计n1.00
(1)求出表中的a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以坐标原点为对称中心,两坐标轴为对称轴的双曲线C的一条渐近线倾斜角为$\frac{π}{3}$,则双曲线C的离心率为2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x-a|-|x-4|,a∈R.
(Ⅰ)当a=-1时,求不等式f(x)≥4的解集;
(Ⅱ)若?x∈R,|f(x)|≤2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{{8-{a^2}}}$=1(a>0)的焦点在x轴上,且椭圆E的焦距为4.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)过椭圆外一点M(m,0)(m>a)作倾斜角为$\frac{5π}{6}$的直线l与椭圆交于C,D两点,若椭圆E的右焦点F在以弦CD为直径的圆的内部,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数f(x)=xln|x|+1,则f(x)的极大值与极小值之和为(  )
A.0B.1C.$2-\frac{2}{e}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=2$\sqrt{3}$,如图2.
(1)求证:FA∥平面BC'D;
(2)求平面ABD与平面FBC'所成角的余弦值;
(3)在线段AD上是否存在一点M,使得C'M⊥平面FBC?若存在,求$\frac{AM}{AD}$的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M$(1,\frac{3}{2})$在椭圆E上.
(1)求椭圆E的方程;
(2)设P(-4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB均与圆x2+y2=r2(r>0)相切,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知各项均不相等的等比数列{an}中,a2=1,且$\frac{1}{4}$a1,a3,$\frac{7}{4}$a5成等差数列,则a4等于(  )
A.$\frac{1}{49}$B.49C.$\frac{1}{7}$D.7

查看答案和解析>>

同步练习册答案