精英家教网 > 高中数学 > 题目详情
7.已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M$(1,\frac{3}{2})$在椭圆E上.
(1)求椭圆E的方程;
(2)设P(-4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB均与圆x2+y2=r2(r>0)相切,求k的值.

分析 (1)求出抛物线的焦点,可得椭圆的焦点,即c=1,再由椭圆的定义,结合两点的距离公式,可得a=2,由a,b,c的关系,可得b,进而得到椭圆方程;
(2)由题意可得kPA+kPB=0,设A(x1,y1),B(x2,y2),运用两点的斜率公式和点在直线上,将直线y=kx+1代入椭圆方程,运用韦达定理,代入可得k的方程,化简整理,解方程可得k的值.

解答 解:(1)抛物线y2=4x的焦点为(1,0),
则椭圆的焦点为(-1,0),(1,0),即c=1,
点M$(1,\frac{3}{2})$在椭圆E上,
由椭圆的定义可得2a=$\sqrt{(1+1)^{2}+(\frac{3}{2})^{2}}$+$\sqrt{(1-1)^{2}+(\frac{3}{2})^{2}}$
=$\frac{5}{2}$+$\frac{3}{2}$=4,
即a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
则椭圆方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1;
(2)由P在x轴上,直线PA,PB均与圆x2+y2=r2(r>0)相切,
可得kPA+kPB=0,
设A(x1,y1),B(x2,y2),则$\frac{{y}_{1}}{{x}_{1}+4}$+$\frac{{y}_{2}}{{x}_{2}+4}$=0,
即有x1y2+4y2+x2y1+4y1=0,
由y1=kx1+1,y2=kx2+1,
可得2kx1x2+(x1+x2)(4k+1)+8=0,①
由直线y=kx+1代入椭圆方程可得(3+4k2)x2+8kx-8=0,
判别式△=64k2+32(3+4k2)>0显然成立,
x1+x2=-$\frac{8k}{3+4{k}^{2}}$,x1x2=-$\frac{8}{3+4{k}^{2}}$,
代入①,可得2k•(-$\frac{8}{3+4{k}^{2}}$)+(-$\frac{8k}{3+4{k}^{2}}$)(4k+1)+8=0,
解得k=1.

点评 本题考查椭圆的方程的求法,注意运用抛物线的焦点和椭圆的定义,考查直线和椭圆方程联立,运用韦达定理和直线的斜率公式,考查化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若S9=54,则a1+a5+a9=(  )
A.9B.15C.18D.36

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.据统计,某城市的火车站春运期间日接送旅客人数X(单位:万)服从正态分布X~N(6,0.82),则日接送人数在6万到6.8万之间的概率为(  )
(P(|X-μ|<σ)=0.6826,P(|X-μ|<2σ)=0.9544,P(|X-μ|<3σ)=0.9974)
A.0.6826B.0.9544C.0.9974D.0.3413

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}是等比数列,满足a2=2,a2+a4+a6=14,则a6=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}是等比数列,则“a2>a1”是“数列{an}为递增数列”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在直角坐标系xOy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=\sqrt{2}cosα}\\{y=sinα}\end{array}\right.$(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=4$\sqrt{2}$.
(1)求曲线C的普通方程与直线l的直角坐标方程;
(2)设P为曲线C上的动点,求点P到直线l的距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知实数a,b,c满足a,b,c∈R+
(Ⅰ)若ab=1,证明:($\frac{1}{a}$+$\frac{1}{b}$)2≥4;
(Ⅱ)若a+b+c=3,且$\sqrt{a}$+$\sqrt{b}$+$\sqrt{c}$≤|2x-1|-|x-2|+3恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an},{bn}的首项a1=b1=1,且满足(an+1-an2=4,|bn+1|=q|bn|,其中n∈N*.设数列{an},{bn}的前n项和分别为Sn,Tn
(Ⅰ)若不等式an+1>an对一切n∈N*恒成立,求Sn
(Ⅱ)若常数q>1且对任意的n∈N*,恒有$\sum_{k=1}^{n+1}$|bk|≤4|bn|,求q的值;
(Ⅲ)在(2)的条件下且同时满足以下两个条件:
(ⅰ)若存在唯一正整数p的值满足ap<ap-1
(ⅱ) Tm>0恒成立.试问:是否存在正整数m,使得Sm+1=4bm,若存在,求m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知x,y满足$\left\{{\begin{array}{l}{y≥x,\;}\\{x+y≤4}\\{2x-y≥k}\end{array}}\right.$若z=x+2y有最大值8,则实数k的值为-4.

查看答案和解析>>

同步练习册答案