精英家教网 > 高中数学 > 题目详情
17.已知x,y满足$\left\{{\begin{array}{l}{y≥x,\;}\\{x+y≤4}\\{2x-y≥k}\end{array}}\right.$若z=x+2y有最大值8,则实数k的值为-4.

分析 作出不等式组对应的平面区域,利用目标函数的几何意义即可得到结论.

解答 解:作出x,y满足$\left\{{\begin{array}{l}{y≥x,\;}\\{x+y≤4}\\{2x-y≥k}\end{array}}\right.$对应的平面区域如图:
由图象可知z=x+2y在点A处取得最大值,由$\left\{\begin{array}{l}{x+2y=8}\\{x+y=4}\end{array}\right.$,
解得A(0,4),A在直线2x-y=k上,
此时0-4=k,
解得k=-4,
故答案为:-4.

点评 本题主要考查线性规划的应用,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知椭圆E的右焦点与抛物线y2=4x的焦点重合,点M$(1,\frac{3}{2})$在椭圆E上.
(1)求椭圆E的方程;
(2)设P(-4,0),直线y=kx+1与椭圆E交于A,B两点,若直线PA,PB均与圆x2+y2=r2(r>0)相切,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知各项均不相等的等比数列{an}中,a2=1,且$\frac{1}{4}$a1,a3,$\frac{7}{4}$a5成等差数列,则a4等于(  )
A.$\frac{1}{49}$B.49C.$\frac{1}{7}$D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.由直线$y=-x+\frac{5}{2}$和曲线$y=\frac{1}{x}$围成的封闭图形的面积为$\frac{15}{8}$-2ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知λ∈R,函数f(x)=ex-ex-λ(xlnx-x+1)的导数为g(x).
(1)求曲线y=f(x)在x=1处的切线方程;
(2)若函数g(x)存在极值,求λ的取值范围;
(3)若x≥1时,f(x)≥0恒成立,求λ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex+x2-x,g(x)=x2+ax+b,a,b∈R.
(Ⅰ)当a=1时,求函数F(x)=f(x)-g(x)的单调区间;
(Ⅱ)若曲线y=f(x)在点(0,1)处的切线l与曲线y=g(x)切于点(1,c),求a,b,c的值;
(Ⅲ)若f(x)≥g(x)恒成立,求a+b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∠ACB=90°,AC=BC=1,AA1=2,D是棱AA1的中点.   
(Ⅰ)求证:B1C1∥平面BCD;
(Ⅱ)求三棱锥B-C1CD的体积;
(Ⅲ)在线段BD上是否存在点Q,使得CQ⊥BC1?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.2017年3月2日至16日,全国两会在北京召开,甲、乙两市近5年与会代表名额数统计如图所示,设甲、乙的数据平均数分别为$\overline{{x}_{1}}$,$\overline{{x}_{2}}$,中位数分别为y1,y2,则(  )
A.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1>y2B.$\overline{{x}_{1}}$>$\overline{{x}_{2}}$,y1=y2C.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1=y2D.$\overline{{x}_{1}}$<$\overline{{x}_{2}}$,y1<y2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知全集U={x∈N|x≤4},A={0,1,3},B={1,3,4},则∁U(A∩B)=(  )
A.{2}B.{4}C.{2,4}D.{0,2,4}

查看答案和解析>>

同步练习册答案