精英家教网 > 高中数学 > 题目详情
20.已知四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”是“l垂直于两底AB,CD”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

分析 四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”,又AD与BC相交.∴l⊥平面ABCD⇒l垂直于两底AB,CD,反之不成立.即可判断出结论.

解答 解:四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”,又AD与BC相交.
∴l⊥平面ABCD⇒l垂直于两底AB,CD,反之不成立.
∴“l垂直于两腰AD,BC”是“l垂直于两底AB,CD”的充分不必要条件.
故选:A.

点评 本题考查了空间线面垂直的判定与性质定理、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知△ABC三内角A,B,C对应的边长分别为a,b,c,且$B=\frac{2π}{3}$,又边长b=3c,那么sinC=$\frac{{\sqrt{3}}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知方程|$\sqrt{(x-4)^{2}+{y}^{2}}$-$\sqrt{(x+4)^{2}+{y}^{2}}$|=6表示双曲线,则a,b,c分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
 组数分组(单位:岁)频数频率
[20,25)50.05
 2[25,30)200.20
 3[30,35)a0.35
 4[35,40)30b
 5[40,45]100.10
合计n1.00
(1)求出表中的a,b,n的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定从所随机抽取的市民中按年龄采用分层抽样的方法抽取20名接受采访,再从抽出的这20名中年龄在[30,40)的选取2名担任主要发言人.记这2名主要发言人年龄在[35,40)的人数为ξ,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.当今,手机已经成为人们不可或缺的交流工具,人们常常把喜欢玩手机的人冠上了名号“低头族”,手机已经严重影响了人们的生活,一媒体为调查市民对低头族的认识,从某社区的500名市民中,随机抽取n名市民,按年龄情况进行统计的得到频率分布表和频率分布直方图如下:
 组数分组(单位:岁)频数频率
[20,25)50.05
 2[25,30)200.20
 3[30,35)a0.35
 4[35,40)30b
 5[40,45]100.10
合计n1.00
(1)求出表中的a,b的值,并补全频率分布直方图;
(2)媒体记者为了做好调查工作,决定在第2,4,5组中用分层抽样的方法抽取6名市民进行问卷调查,再从这6名市民中随机抽取2名接受电视采访,求第2组至少有一名接受电视采访的概率?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知异面直线l1,l2,点A是直线l1上的一个定点,过l1,l2分别引互相垂直的两个平面α,β,设l=α∩β,P为点A在l的射影,当α,β变化时,点P的轨迹是(  )
A.B.两条相交直线C.球面D.抛物线

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足${a_1}+3{a_2}+{3^2}{a_3}+…+{3^{n-1}}{a_n}=\frac{n+1}{3}$,(n∈N+).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设${b_n}=\frac{1}{{{3^{n+1}}(1-{a_n})(1-{a_{n+1}})}}$,数列{bn}的前n项和Sn,求证:${S_n}<\frac{7}{16}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.以坐标原点为对称中心,两坐标轴为对称轴的双曲线C的一条渐近线倾斜角为$\frac{π}{3}$,则双曲线C的离心率为2或$\frac{2\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图1,在边长为2的菱形ABCD中,∠BAD=60°,将△BCD沿对角线BD折起到△B'CD的位置,使平面BC'D⊥平面ABD,E是BD的中点,FA⊥平面ABD,且FA=2$\sqrt{3}$,如图2.
(1)求证:FA∥平面BC'D;
(2)求平面ABD与平面FBC'所成角的余弦值;
(3)在线段AD上是否存在一点M,使得C'M⊥平面FBC?若存在,求$\frac{AM}{AD}$的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案