精英家教网 > 高中数学 > 题目详情
5.已知异面直线l1,l2,点A是直线l1上的一个定点,过l1,l2分别引互相垂直的两个平面α,β,设l=α∩β,P为点A在l的射影,当α,β变化时,点P的轨迹是(  )
A.B.两条相交直线C.球面D.抛物线

分析 由题意,异面直线l1,l2间的距离为定值,P为点A在l的射影,则PA为定值,点A是直线l1上的一个定点,即可得出结论.

解答 解:由题意,异面直线l1,l2间的距离为定值,P为点A在l的射影,则PA为定值,即异面直线l1,l2间的距离,
∵点A是直线l1上的一个定点,
∴当α,β变化时,点P的轨迹是球面,
故选C.

点评 本题考查点的轨迹,考查面面垂直,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.函数$f(x)=Asin(ωx+\frac{π}{6})(A>0,ω>0)$的最大值为2,它的最小正周期为2π.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若g(x)=cosx•f(x),求g(x)在区间$[-\frac{π}{6},\frac{π}{4}]$上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知1+i=$\frac{i}{z}$,则在复平面内,复数z所对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=|2x+3|+|x-1|.
(1)解不等式f(x)>4;
(2)若?x∈(-∞,-$\frac{3}{2}$),不等式a+1<f(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知四边形ABCD为梯形,AB∥CD,l为空间一直线,则“l垂直于两腰AD,BC”是“l垂直于两底AB,CD”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知等差数列{an}的前n项和为Sn,且a3=7,S4=24,数列{bn}的前n项和Tn=n2+an
(1)求数列{an},{bn}的通项公式;
(2)求数列$\left\{{\frac{b_n}{2^n}}\right\}$的前n项和Bn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设等差数列{an}的前n项和为Sn,若S9=54,则a1+a5+a9=(  )
A.9B.15C.18D.36

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,四棱锥P-ABCD中,平面PAC⊥平面ABCD,AC=2BC=2CD=4,∠ACB=∠ACD=60°.
(1)证明:CP⊥BD;
(2)若AP=PC=2$\sqrt{2}$,求二面角A-BP-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}是等比数列,满足a2=2,a2+a4+a6=14,则a6=8.

查看答案和解析>>

同步练习册答案