| 价格x(百元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 销量y(件/天) | 90 | 84 | 83 | 80 | 75 | 68 |
分析 (Ⅰ)求出回归系数,可得y关于x的线性回归方程$\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,并预测当价格为1000元时,每天的商品的销量为多少;
(Ⅱ)求出基本事件的个数,即可得出相应的概率.
解答 解:(Ⅰ)$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{x}_{i}^{2}-n{\overline{x}}^{2}}$=$\frac{3050-6×6.5×80}{271-6×6.{5}^{2}}$=-4,$\stackrel{∧}{a}$=80-(-4)×6.5=106,
∴$\stackrel{∧}{y}$=-4x+106,
x=10时,$\stackrel{∧}{y}$=-40+106=66,即预测当价格为1000元时,每天的商品的销量为66件;
(Ⅱ)以从这6天中随机抽取2天,有${C}_{6}^{2}$=15种,至少有1天的价格高于700元,
有${C}_{6}^{2}$-${C}_{4}^{2}$=9种,概率P=$\frac{9}{15}$=$\frac{3}{5}$.
点评 本题考查独立性检验知识的运用,考查概率的计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | {-2,-1,0} | B. | {0,1,2} | C. | {-1,0,1} | D. | {-2,-1,0,1} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{2}$-1 | C. | 5 | D. | $\sqrt{3}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a>b>c | B. | a>c>b | C. | b>a>c | D. | b>c>a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com