精英家教网 > 高中数学 > 题目详情
已知tanα=-2,求4sin2α+3cos2α的值.
考点:同角三角函数基本关系的运用
专题:三角函数的求值
分析:原式分母看做“1”,利用同角三角函数间基本关系化简,再弦化切后将tanα的值代入计算即可求出值.
解答: 解:∵tanα=-2,
∴原式=
4sin2α+3cos2α
sin2α+cos2α
=
4tan2α+3
tan2α+1
=
16+3
4+1
=
19
5
点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知α,β是任意角,则“sinα=cosα”是“cos(α+β)=sin(α-β)”的(  )
A、充分不必要条件
B、必要不充分条件
C、充要条件
D、既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,2),
b
=(x,1),
u
=
a
+2
b
v
=2
a
-
b
,且
u
v
,求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(
1
2
)=8,求此二次函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x+λ2-x(λ∈R).
(1)当λ=-1时,求函数f(x)的零点;
(2)若函数f(x)为偶函数,求实数λ的值;
(3)若不等式
1
2
≤f(x)≤4在x∈[0,1]上恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P(x,y)是圆x2+y2-6x-4y+12=0上的动点,求:
(1)x2+y2的最值;
(2)x+y的最值;
(3)P到直线x+y-1=0的距离d的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对某校高三学生一个月内参加体育活动的次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加体育活动的次数.根据此数据做出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30]20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生在一个月内参加体育活动的次数在区间[10,15)内的人数;
(Ⅲ)在所取的样本中,从参加体育活动的次数不少于20次的学生中任取4人,记此4人中参加体育活动不少于25次的人数为ξ,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知(
3x
-
1
2
3x
)n
展开式中,第五项的二项式系数与第三项的二项式系数的比是14:3.
(1)求n.
(2)求含x2项的系数.
(3)求展开式中所有有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=loga(4-ax)在区间[0,6]上为增函数,则a的取值范围是
 

查看答案和解析>>

同步练习册答案