精英家教网 > 高中数学 > 题目详情
4.已知实数m,n满足$\frac{5+mi}{n-2i}$=4+6i,则在复平面内,复数z=m+ni所对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

分析 把已知等式变形,利用复数代数形式的乘法运算化简,再由复数相等的条件列式求得m,n的值得答案.

解答 解:由$\frac{5+mi}{n-2i}=\frac{(5+mi)(n+2i)}{(n-2i)(n+2i)}=\frac{5n-2m}{{n}^{2}+4}+\frac{10+mn}{{n}^{2}+4}i$=4+6i,
得5+mi=(4+6i)(n-2i)=4n+12+(6n-8)i,
∴$\left\{\begin{array}{l}{4n+12=5}\\{6n-8=m}\end{array}\right.$,解得m=-$\frac{37}{2}$,n=$-\frac{7}{4}$.
∴复数z=m+ni所对应的点的坐标为($-\frac{37}{2},-\frac{7}{4}$),位于第三象限.
故选:C.

点评 本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义,考查复数相等的条件,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.执行如图所示的程序框图,输出的所有值之和是37.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinx-cosx,x∈R.
(Ⅰ)求f(x)的最小正周期和最大值;
(Ⅱ)求f(x)的单调增区间;
(Ⅲ)求f(x)在[0,π]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.${log_3}9\sqrt{3}$=(  )
A.$\frac{3}{2}$B.$\frac{5}{2}$C.$\frac{7}{2}$D.$\frac{7}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在△ABC中,角A、B、C的对边分别为a、b、c,已知a=1,A=30°,$sinBcotA+cosB=\sqrt{3}$,求b边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(1+2x)6展开式中含x2项的系数为(  )
A.15B.30C.60D.120

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列4个命题中:
(1)?x0∈(0,+∞),使得2x0<3x0
(2)?x0∈(0,1),使得log2x0≥log3x0
(3)?x∈(0,+∞),log2x<2x
(4)?x∈(0,+∞),log2x<$\frac{1}{x}$
真命题的是(  )
A.(1)(3)B.(1)(4)C.(2)(3)D.(2)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知P为抛物线y2=4x上一个动点,Q为圆x2+(y-4)2=1上一个动点,当点P到点Q的距离与点P到抛物线的准线距离之和最小时,P点的横坐标为(  )
A.$\frac{\sqrt{17}}{8}$B.$\frac{9-\sqrt{17}}{8}$C.$\frac{9}{8}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知定义域为R的函数f(x)=$\frac{{-{2^x}+b}}{{{2^{x+1}}+a}}$是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)已知f(x)在定义域上为减函数,若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0(k为常数)恒成立.求k的取值范围.

查看答案和解析>>

同步练习册答案