精英家教网 > 高中数学 > 题目详情
15.不超过实数x的最大整数称为x的整数部分,记作[x].已知f(x)=cos([x]-x),给出下列结论:
①f(x)是偶函数;
②f(x)是周期函数,且最小值周期为π;
③f(x)的单调递减区间为[k,k+1)(k∈Z);
④f(x)的值域为[cos1,1).
其中正确的个数为(  )
A.0B.1C.2D.3

分析 通过计算特殊值验证判断①,②;利用符合函数的单调性判断③,根据[x]-x的范围和余弦函数的性质判断④.

解答 解:对于①,∵f(π)=cos(3-π)=cos(π-3),f(-π)=cos(-4+π)=cos(4-π),
显然f(π)≠f(-π),∴f(x)不是偶函数,故①错误;
对于②,f(0)=cos(0-0)=cos0=1,而f(π)=cos(π-3)≠1,
∴f(0)≠f(π),即f(x)不是周期为π的函数,故②错误;
对于③,当x∈[k,k+1)时,[x]=k,
令t(x)=x-[x],则t(x)在区间[k,k+1)单调递增,且0≤t(x)<1,
又y=cosx在[0,1)上单调递减,
∴f(x)=cos([x]-x)=cos(x-[x])在[k,k+1)单调递减,故③正确;
对于④,∵-1<[x]-x≤0,∴f(x)取不到值cos1,且f(x)的最大值为1.
故④错误.
故选:B.

点评 本题考查命题的真假判断与应用,考查函数的图象,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.将函数$y=4sin({4x+\frac{π}{6}})$的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将所得图象向右平移$\frac{π}{6}$个单位,则所得函数图象的一个对称中心为(  )
A.(0,0)B.$({\frac{π}{3},0})$C.$({\frac{π}{12},0})$D.$({\frac{5}{8}π,0})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若以3,4,x为三边组成一个锐角三角形.则x的取值范围为($\sqrt{7}$,5).若以3,4,x为三边组成一个钝角三角形.则x的取值范围为(5,7)或(1,$\sqrt{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,且a+b≤4,则有(  )
A.$\frac{1}{ab}$≥$\frac{1}{2}$B.$\frac{1}{a2+b2}$≤$\frac{1}{4}$C.$\sqrt{ab}$≥2D.$\frac{1}{a}$+$\frac{1}{b}$≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.棱长为1的正方体截去一部分之后余下的几何体,其三视图如图所示,则余下几何体体积的最小值为(  )
A.$\frac{5}{6}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某四面体的三视图如图所示,该四面体的体积为(  )
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的首项a1=4,当n≥2时,an-1an-4an-1+4=0,数列{bn}满足bn=$\frac{1}{{2-{a_n}}}(n∈N{\;}^*)$
(1)求证:数列{bn}是等差数列,并求{bn}的通项公式;
(2)若cn=4bn•(nan-6),如果对任意n∈N*,都有cn+$\frac{1}{2}$t≤2t2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2.
(1)写出直线l的一般方程及圆C的标准方程;
(2)设P(-1,1),直线l与圆C相交于A,B两点,求|PA|-|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.甲、乙两人对目标各射击一次,甲命中目标的概率为$\frac{2}{3}$,乙命中目标的概率为$\frac{4}{5}$,若命中目标的人数为X,则D(X)等于(  )
A.$\frac{85}{225}$B.$\frac{86}{225}$C.$\frac{88}{225}$D.$\frac{89}{225}$

查看答案和解析>>

同步练习册答案