精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系xoy中直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2.
(1)写出直线l的一般方程及圆C的标准方程;
(2)设P(-1,1),直线l与圆C相交于A,B两点,求|PA|-|PB|的值.

分析 (1)消去参数t,可得直线l的一般方程,根据ρ2=x2+y2,可得圆C的标准方程.
(2)判断P点位置,设A(xA,yA),B(xB,yB),利用参数方程的几何意义,求出tA+tB,tA•tB,即可求|PA|-|PB|的值.

解答 解:直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t为参数),
消去参数t,可得x-1=2(y-2),即直线l的一般方程x-2y+3=0.
由ρ2=x2+y2,可得x2+y2=4.
即圆C的标准方程;x2+y2=4.
(1)已知P(-1,1),易知P在圆内,设A(xA,yA),B(xB,yB),
联立:$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=4}\\{\left\{\begin{array}{l}{x=1+2t}\\{y=2+t}\end{array}\right.}\end{array}\right.$
可得:tA+tB=$-\frac{8}{5}$,${t}_{A}•{t}_{B}=\frac{1}{5}>0$.
∴(1+tA)(1+tB)=$-\frac{2}{5}<0$.
两点之间的距离公式:
则|AP|=$\sqrt{5}$(1+tA).
则|BP|=$\sqrt{5}$(1+tB).
那么:|PA|-|PB|=$\sqrt{5}$|1+tA)-(1+tB)|=$\sqrt{5}$|tA+tB+2|=$\frac{2\sqrt{5}}{5}$.

点评 本题考查点的极坐标和直角坐标的互化,以及利用平面几何知识解决长度问题.利用直角坐标与极坐标间的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),则f(1)+f(2)+…+f(2017)$=(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.0D.$-2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.不超过实数x的最大整数称为x的整数部分,记作[x].已知f(x)=cos([x]-x),给出下列结论:
①f(x)是偶函数;
②f(x)是周期函数,且最小值周期为π;
③f(x)的单调递减区间为[k,k+1)(k∈Z);
④f(x)的值域为[cos1,1).
其中正确的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积等于(  )
A.$4\sqrt{3}π$B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.B.$\frac{46}{3}$πC.18πD.$\frac{52}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知结论“a1、a2∈R+,且a1+a2=1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$≥4:若a1、a2、a3∈R+,且a1+a2+a3=1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+$\frac{1}{{a}_{3}}$≥9”,请猜想若a1、a2、…、an∈R+,且a1+a2+…+an=1,则$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{n}}$≥n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)求证:$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$.
(2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①试从上述五个式子中选择一个,求出这个常数;
②根据①的计算结果,将该同学的发现推广为三角恒等式.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=kcos(kx)在区间$({\frac{π}{4},\frac{π}{3}})$单调递减,则实数k的取值范围为[-6,-4]∪(0,3]∪[8,9]∪{-12}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知平面向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
(1)证明:$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(2)若存在不同时为零的实数k和t,使$\overrightarrow{c}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$,$\overrightarrow{d}$=-k$\overrightarrow{a}$+t$\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{d}$,试求函数关系式k=f(t).

查看答案和解析>>

同步练习册答案