精英家教网 > 高中数学 > 题目详情
12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积等于(  )
A.$4\sqrt{3}π$B.C.D.12π

分析 作出棱锥的直观图,根据棱锥的结构特征得出外接球的球心位置,再计算球的表面积.

解答 解:作出几何体的三视图如图所示:
其中PA⊥平面ABC,AB⊥BC,PA=AB=BC=2,
∴PB=2$\sqrt{2}$,PC=2$\sqrt{3}$,
∵三棱锥的各侧面均为直角三角形,
∴PC为棱锥外接球的直径,
∴外接球的表面积S=4π×($\frac{2\sqrt{3}}{2}$)2=12π.
故选D.

点评 本题考查了棱锥与外接球的位置关系,几何体的面积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知向量$\overrightarrow{m}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{n}$=(1,sin2x),设函数$f(x)=\overrightarrow m•\overrightarrow n$,则下列关于函数y=f(x)的性质的描述正确的是(  )
A.关于直线$x=\frac{π}{12}$对称B.关于点$({\frac{5π}{12},0})$对称
C.周期为2πD.y=f(x)在$({-\frac{π}{3},0})$上是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设a>0,b>0,且a+b≤4,则有(  )
A.$\frac{1}{ab}$≥$\frac{1}{2}$B.$\frac{1}{a2+b2}$≤$\frac{1}{4}$C.$\sqrt{ab}$≥2D.$\frac{1}{a}$+$\frac{1}{b}$≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某四面体的三视图如图所示,该四面体的体积为(  )
A.$\frac{4}{3}$B.2C.$\frac{8}{3}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的首项a1=4,当n≥2时,an-1an-4an-1+4=0,数列{bn}满足bn=$\frac{1}{{2-{a_n}}}(n∈N{\;}^*)$
(1)求证:数列{bn}是等差数列,并求{bn}的通项公式;
(2)若cn=4bn•(nan-6),如果对任意n∈N*,都有cn+$\frac{1}{2}$t≤2t2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某三棱锥的三视图如图所示,则该三棱锥最长的棱长为(  )
A.$\sqrt{5}$B.$2\sqrt{2}$C.3D.$3\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2.
(1)写出直线l的一般方程及圆C的标准方程;
(2)设P(-1,1),直线l与圆C相交于A,B两点,求|PA|-|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求函数$f(x)=sin(-2x+\frac{π}{2})$的单调递减区间[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点P(0,4)与抛物线y2=2x只有一个公共点的直线有3条.

查看答案和解析>>

同步练习册答案