精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{m}$=(2cos2x,$\sqrt{3}$),$\overrightarrow{n}$=(1,sin2x),设函数$f(x)=\overrightarrow m•\overrightarrow n$,则下列关于函数y=f(x)的性质的描述正确的是(  )
A.关于直线$x=\frac{π}{12}$对称B.关于点$({\frac{5π}{12},0})$对称
C.周期为2πD.y=f(x)在$({-\frac{π}{3},0})$上是增函数

分析 利用三角恒等变换化简f(x)的解析式,根据正弦函数的性质判断.

解答 解:f(x)=2cos2x+$\sqrt{3}$sin2x=cos2x+$\sqrt{3}$sin2x+1=2sin(2x+$\frac{π}{6}$)+1,
当x=$\frac{π}{12}$时,sin(2x+$\frac{π}{6}$)=sin$\frac{π}{3}$≠±1,∴f(x)不关于直线x=$\frac{π}{12}$对称;
当x=$\frac{5π}{12}$时,2sin(2x+$\frac{π}{6}$)+1=1,∴f(x)关于点($\frac{5π}{12}$,1)对称;
f(x)得周期T=$\frac{2π}{2}$=π,
当x∈$({-\frac{π}{3},0})$时,2x+$\frac{π}{6}$∈(-$\frac{π}{2}$,$\frac{π}{6}$),∴f(x)在在$({-\frac{π}{3},0})$上是增函数.
故选D.

点评 本题考查了三角恒等变换,正弦函数的图象与性质,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.(文科)等腰△ABC的顶角$A=\frac{2π}{3}$,$|BC|=2\sqrt{3}$,则$\overrightarrow{BA}•\overrightarrow{AC}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=3x+2sinx,x∈(-2,2),如果f(a-1)+f(1-2a)<0成立,则实数a的取值范围为$({0,\frac{3}{2}})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=lg(sin2x)+$\sqrt{9-{x^2}}$的定义域是(  )
A.[-3,3]B.(0,$\frac{π}{2}$)C.[-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$)D.(-3,-$\frac{π}{2}$)∪(0,$\frac{π}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-y2=4有相同的右焦点F2,点P是椭圆C1与双曲线C2在第一象限的公共点,若|PF2|=2,则椭圆C1的离心率等于$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}满足a1=0,an+1=an+2n,那么a2009的值是(  )
A.2 008×2009B.2008×2007C.2009×2 010D.20092

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.$若f(n)=tan\frac{nπ}{3},(n∈{N^*}),则f(1)+f(2)+…+f(2017)$=(  )
A.$-\sqrt{3}$B.$\sqrt{3}$C.0D.$-2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若曲线f(x)=$\frac{1}{aln(x+1)}$(e-1<x<e2-1)和g(x)=-x3+x2(x<0)上分别存在点A、B,使得△OAB是以原点O为直角顶点的直角三角形,且斜边AB的中点在y轴上,则实数a的取值范围是(  )
A.(e,e2B.(e,$\frac{{e}^{2}}{2}$)C.(1,e2D.[1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积等于(  )
A.$4\sqrt{3}π$B.C.D.12π

查看答案和解析>>

同步练习册答案