精英家教网 > 高中数学 > 题目详情
2.过点P(0,4)与抛物线y2=2x只有一个公共点的直线有3条.

分析 根据题意,分析可得点P(0,4)在抛物线y2=2x外,进而根据抛物线的图象和性质可得到答案.

解答 解:根据题意,作出抛物线y2=2x的图形如图,而点P在y轴上,
分析可得:过点P有3条直线与抛物线只有一个公共点.
其中包括y轴(斜率不存在的切线),过点P与x轴平行的直线以及过点P与抛物线相切的斜率存在一条直线.
故答案为:3.

点评 本题考查抛物线的几何性质,注意分析抛物线与点的位置关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的外接球的表面积等于(  )
A.$4\sqrt{3}π$B.C.D.12π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=kcos(kx)在区间$({\frac{π}{4},\frac{π}{3}})$单调递减,则实数k的取值范围为[-6,-4]∪(0,3]∪[8,9]∪{-12}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a}|=1$,$|{\overrightarrow b}|=2$,$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{3}$,则$\overrightarrow a•\overrightarrow b$=(  )
A.1B.2C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知不等式ax2-bx-1≥0的解是[-$\frac{1}{2}$,-$\frac{1}{3}$]
(1)求a,b的值;
(2)求不等式x2-bx-a<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.己知三棱锥A-BCO,OA,OB,OC两两垂直且长度均为6,长为2的线段MN的一个端点M在棱OA上运动,另一个端点N在底面BCO内运动(含边界),则MN的中点P的轨迹与三棱锥的O点所在的三个面所围成的几何体的表面积为(  )
A.$\frac{5π}{2}$B.$\frac{5π}{4}$C.$\frac{3+π}{2}$D.3+π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知平面向量$\overrightarrow{a}$=($\sqrt{3}$,-1),$\overrightarrow{b}$=($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$).
(1)证明:$\overrightarrow{a}$⊥$\overrightarrow{b}$;
(2)若存在不同时为零的实数k和t,使$\overrightarrow{c}$=$\overrightarrow{a}$+(t2-3)$\overrightarrow{b}$,$\overrightarrow{d}$=-k$\overrightarrow{a}$+t$\overrightarrow{b}$,且$\overrightarrow{c}$⊥$\overrightarrow{d}$,试求函数关系式k=f(t).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数f(x)=sin(2x+$\frac{π}{6}$)的最小正周期为(  )
A.$\frac{π}{2}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若三条直线2x-y+4=0,x-2y+5=0,mx-3y+12=0围成直角三角形,则m=-$\frac{3}{2}$或-6.

查看答案和解析>>

同步练习册答案