精英家教网 > 高中数学 > 题目详情
16.(1)求证:$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$.
(2)某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
sin213°+cos217°-sin13°cos17°;
sin215°+cos215°-sin15°cos15°;
sin218°+cos212°-sin18°cos12°;
sin2(-18°)+cos248°-sin(-18°)cos48°;
sin2(-25°)+cos255°-sin(-25°)cos55°.
①试从上述五个式子中选择一个,求出这个常数;
②根据①的计算结果,将该同学的发现推广为三角恒等式.

分析 (1)两边平方证明即可;
(2)①根据同角的三角函数的关系以及二倍角公式计算即可;②根据计算结果推广公式即可.

解答 (1)证明:要证明$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$成立,
只需证明$\sqrt{8}+\sqrt{3}<\sqrt{5}+\sqrt{6}$,…(3分)
即${(\sqrt{8}+\sqrt{3})^2}<{(\sqrt{5}+\sqrt{6})^2}$,
即$8+2\sqrt{24}+3<5+2\sqrt{30}+6$…(7分)
从而只需证明$2\sqrt{24}<2\sqrt{30}$
即24<30,这显然成立.
这样,就证明了$\sqrt{8}-\sqrt{6}<\sqrt{5}-\sqrt{3}$…(9分)
(2)解:①选择(2)式,计算如下:
sin215°+cos215°-sin15°cos15°
=1-$\frac{1}{2}$sin30°
=1-$\frac{1}{4}$=$\frac{3}{4}$.…(14分)
②三角恒等式为sin2α+cos2(30°-α)-sinαcos(30°-α)=$\frac{3}{4}$.…(17分)

点评 本题考查了简单的合情推理问题,考查三角函数的恒等变换以及不等式的证明,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.若以3,4,x为三边组成一个锐角三角形.则x的取值范围为($\sqrt{7}$,5).若以3,4,x为三边组成一个钝角三角形.则x的取值范围为(5,7)或(1,$\sqrt{7}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}的首项a1=4,当n≥2时,an-1an-4an-1+4=0,数列{bn}满足bn=$\frac{1}{{2-{a_n}}}(n∈N{\;}^*)$
(1)求证:数列{bn}是等差数列,并求{bn}的通项公式;
(2)若cn=4bn•(nan-6),如果对任意n∈N*,都有cn+$\frac{1}{2}$t≤2t2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xoy中直线l的参数方程为$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t为参数),以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,圆C的极坐标方程为ρ=2.
(1)写出直线l的一般方程及圆C的标准方程;
(2)设P(-1,1),直线l与圆C相交于A,B两点,求|PA|-|PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.(1)已知直线l的方程为ax-y+2+a=0(a∈R),求证:不论a为何实数,直线l恒过一定点P;
(2)过(1)中的点P作一条直线m,使它被直线l1:4x+y+3=0和l2:3x-5y-5=0截得的线段被点P平分,求直线m的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.求函数$f(x)=sin(-2x+\frac{π}{2})$的单调递减区间[kπ,kπ+$\frac{π}{2}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“sinα<0”是“α为第三、四象限角”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.甲、乙两人对目标各射击一次,甲命中目标的概率为$\frac{2}{3}$,乙命中目标的概率为$\frac{4}{5}$,若命中目标的人数为X,则D(X)等于(  )
A.$\frac{85}{225}$B.$\frac{86}{225}$C.$\frac{88}{225}$D.$\frac{89}{225}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若两个非零向量$\overrightarrow a,\overrightarrow b$满足$|{\overrightarrow a+\overrightarrow b}|=|{\overrightarrow a-\overrightarrow b}|=2|{\overrightarrow a}|$,则向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角是(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案