精英家教网 > 高中数学 > 题目详情
6.已知平面α、β、γ及直线l,m,l⊥m,α⊥γ,γ∩α=m,γ∩β=l,以此作为条件得出下面三个结论:①β⊥γ ②l⊥α ③m⊥β,其中正确结论是(  )
A.①、②B.①③C.②、③D.

分析 做出图形α,β,m,l,过l作平面β,根据β的位置进行判断.

解答 解:在γ内作直线l⊥m,过l做平面β,则β可能与γ垂直,也可能不与γ垂直,故①错误;
同理,β也可能与m垂直,也可能与m不垂直,故③错误;
∵α⊥γ,γ∩α=m,l⊥m,l?γ,
∴l⊥α,故②正确;
故选:D.

点评 本题考查了空间线面位置关系的判断,结合图形进行分析,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.定义区间(a,b),[a,b),(a,b],[a,b]的长度均为d=b-a,多个区间并集的长度为各区间长度之和,例如,(1,2)∪[3,5)的长度d=(2-1)+(5-3)=3.用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R.设f(x)=[x]g{x},g(x)=x-1,当0≤x≤k时,不等式f(x)<g(x)的解集区间的长度为10,则 k=12.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在极坐标系中,直线l的方程为ρsin(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,则点A(2,-$\frac{π}{4}$)到直线l的距离为(  )
A.$\sqrt{2}$B.$\frac{\sqrt{2}}{2}$C.2-$\frac{\sqrt{2}}{2}$D.2+$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=25x3+13x2+2016x-5,则f'(0)=2016.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.定义在区间(0,$\frac{π}{2}$)上的函数y=6cosx的图象与y=9tanx的图象的交点为P,过点P作PP1⊥x轴于点P1,直线PP1与y=sinx的图象交于点P2,则线段P1P2的长为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知a=$\int_0^{\sqrt{6}}$2xdx,则(x-$\frac{1}{x}$)a的二项展开式中常数项为-20.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.光线从点A(-2,1)射到x轴后反射到B(4,3)则光线从A到B经过的总路线为(  )
A.2$\sqrt{10}$B.2$\sqrt{13}$C.2$\sqrt{11}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图所示,在直三棱柱ABC-A1B1C1中,AB=BC=AA1,AB⊥BC,点E、F分别是棱AB、BB1的中点,则直线EF和BC1所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2sinxcos(x+$\frac{π}{3}$)+$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求函数f(x)的最大值与最小值及相应的x的集合;
(2)写出函数f(x)的单调递增区间.

查看答案和解析>>

同步练习册答案