分析 根据双曲线的标准方程可得:a=3,b=$\sqrt{6}$,再由双曲线的定义可得:|AF2|-|AF1|=2a=6,|BF2|-|BF1|=2a=6,所以得到|AF2|+|BF2|-(|AF1|+|BF1|)=12,再根据A、B两点的位置特征得到答案.
解答 解:根据双曲线$\frac{x^2}{9}-\frac{y^2}{6}=1$,得:a=3,b=$\sqrt{6}$,
由双曲线的定义可得:|AF2|-|AF1|=2a=6…①,
|BF2|-|BF1|=2a=6…②,
①+②可得:|AF2|+|BF2|-(|AF1|+|BF1|)=12,
∵过双曲线的左焦点F1的直线交双曲线的左支于A,B两点,
∴|AF1|+|BF1|=|AB|,当|AB|是双曲线的通径时|AB|最小.
∴|AF2|+|BF2|-(|AF1|+|BF1|)=|AF2|+|BF2|-|AB|=12.
|BF2|+|AF2|=|AB|+12≥$\frac{2{b}^{2}}{a}$+12=$\frac{2×6}{3}$+12=16.
故答案为:16.
点评 本题考查两条线段和的最小值的求法,是中档题,解题时要注意双曲线的简单性质的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | log23 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 39 | B. | 40 | C. | 41 | D. | 42 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com