精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤0}\\{-x-1,x>0}\end{array}\right.$,若函数y=f(f(x))-k有3个不同的零点,则实数k的取值范围是-2≤k<-1.

分析 作出函数y=f(f(x))的图象,即可确定实数k的取值范围.

解答 解:由题意,x≤-1,f(x)=1-x2≤0,f(f(x))=1-(1-x22
-1<x≤0,f(x)=1-x2>0,f(f(x))=-2+x2
x>0,f(x)=-x-1<0,f(f(x))=1-(-x-1)2
函数y=f(f(x))的图象如图所示,
∵函数y=f(f(x))-k有3个不同的零点,
∴-2≤k<-1.
故答案为:-2≤k<-1.

点评 本题考查函数的零点,考查数形结合的数学思想,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.以椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的中心O为圆心,且以其短轴长为直径的圆可称为该椭圆的“伴随圆”,记为C1.已知椭圆C的右焦点为($\frac{{\sqrt{3}}}{2}$,0),且过点($\frac{1}{2}$,$\frac{{\sqrt{3}}}{4}$).
(I)求椭圆C及其“伴随圆”C1的方程;
(Ⅱ)过点M(t,0)作C1的切线l交椭圆C于A,B两点,求△AOB(O为坐标原点)的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.θ=$\frac{π}{4}$(ρ≤0)表示的图形是(  )
A.一条射线B.一条直线C.一条线段D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ex-mxk(m,k∈R)定义域为(0,+∞).
(1)若k=2时,曲线y=f(x)在x=1和x=3处的切线互相平行,求实数m的值;
(2)若k=1时,函数f(x)在(1,+∞)上有最小值,求实数m的取值范围;
(3)若m=1时,函数f(x)在(1,+∞)上单调递增,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:x2+y2+4x-6y-3=0
(1)求过点M(-6,-5)的圆C的切线方程;
(2)若圆C上有两点P(x1,y1)、Q(x2,y2)关于直线x+my+5=0对称,且x1+x2+2x1x2=-14,求m的值和直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.集合A={x|x2+2x-3=0,x∈R},B={x|kx+1=0,x∈R},则B?A的一个充分非必要条件是k=-1(或k=$\frac{1}{3}$或k=0)..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于实数x∈(0,$\frac{π}{2}}$),f(x)=$\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}}$.
(I)f(x)≥t恒成立,求t的最大值;
(II)在(I)的条件下,求不等式|x+t|+|x-2|≥5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx+ax(a∈R).
(1)若a=-3,求函数f(x)的单调递增区间;
(2)若对任意的x∈(1,+∞),f(x)>(k+a-1)x-k恒成立,求正整数k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知实数x,y满足(x-1)2+(y-1)2≤1,则|y-x-2|+|x+2y+2|的最大值是(  )
A.6B.$\sqrt{2}$+$\sqrt{5}$C.7+$\sqrt{5}$D.9

查看答案和解析>>

同步练习册答案