精英家教网 > 高中数学 > 题目详情
6.对于实数x∈(0,$\frac{π}{2}}$),f(x)=$\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}}$.
(I)f(x)≥t恒成立,求t的最大值;
(II)在(I)的条件下,求不等式|x+t|+|x-2|≥5的解集.

分析 (I)利用柯西不等式求得f(x)的最小值,再根据f(x)≥t恒成立,求t的最大值.
(II)在(I)的条件下,把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.

解答 解:(I)∵实数x∈(0,$\frac{π}{2}}$),∴sinx>0,cosx>0,
f(x)=$\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}}$=[${(\frac{1}{3sinx})}^{2}$+${(\frac{2}{3cosx})}^{2}$]•(sin2x+cosx2) $≥{({\frac{1}{3}+\frac{2}{3}})^2}=1$,当且仅当$\frac{1}{{3sin}^{2}x}$=$\frac{2}{{3cos}^{2}x}$ 时,取等号,
所以f(x)的最小值为1,所以t≤1,即t的最大值为1.
(II)在(I)的条件下,|x+t|+|x-2|≥5,即,|x+1|+|x-2|≥5,
这个不等式等价于$\left\{\begin{array}{l}x≤-1\\-({x+1})-({x-2})≥5\end{array}\right.$①,或$\left\{\begin{array}{l}{-1<x<2}\\{x+1-(x-2)≥5}\end{array}\right.$ ②,或$\left\{\begin{array}{l}{x≥2}\\{x+1+(x-2)≥5}\end{array}\right.$ ③.
解①求得x≤-2,解②求得x∈∅,解③求得x≥3,
综上可得,不等式的解集为{x|x≤-2或x≥3}.

点评 本题主要考查二维形式的柯西不等式的应用,绝对值不等式的解法,体现了转化、分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆C的方程为x2+y2=4.
(1)求过点P(1,2)且与圆C相切的直线l的方程;
(2)直线l过点P(1,2),且与圆C交于A,B两点,若|AB|=2$\sqrt{3}$,求直线l的方程;
(3)M是圆C上的动点,定点N的坐标为(0,1),若Q为线段MN的中点,求动点Q的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}{x^2}$-alnx+1(a∈R).
(1)若函数f(x)在[1,2]上是单调递增函数,求实数a的取值范围;
(2)若-2≤a<0,对任意x1,x2∈[1,2],不等式|f(x1)-f(x2)|≤m|$\frac{1}{x_1}-\frac{1}{x_2}$|恒成立,求m的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{\begin{array}{l}{1-{x}^{2},x≤0}\\{-x-1,x>0}\end{array}\right.$,若函数y=f(f(x))-k有3个不同的零点,则实数k的取值范围是-2≤k<-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$=(2,-3)、$\overrightarrow{b}$=(x,6),且$\overrightarrow{a}$∥$\overrightarrow{b}$.则|$\overrightarrow{a}$+$\overrightarrow{b}$|的值为(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.5D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式:
(1)ax2-(a+1)x+1<0(a∈R);
(2)ax2+(2a-1)x-2<0(a∈R);
(3)ax2-2x+1<0(a∈R);
(4)x2+x+m≤0(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二阶矩阵M有特征值λ=3,及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
(2)在极坐标系中,设圆C经过点P($\sqrt{3}$,$\frac{π}{6}$),圆心是直线$ρsin(\frac{π}{3}-θ)$=$\frac{\sqrt{3}}{2}$与极轴的交点,求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx.
(Ⅰ)若曲线$g(x)=f(x)+\frac{a}{x}-1$在点(2,g(2))处的切线与直线x+2y-1=0平行,求实数a的值;
(Ⅱ)若$h(x)=f(x)-\frac{{b({x-1})}}{x+1}$在定义域上是增函数,求实数b的取值范围;
(Ⅲ)若m>n>0,求证$\frac{m-n}{m+n}<\frac{lnm-lnn}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2-lnx(a∈R)
(1)当a=1时,求曲线y=f(x)在点(1,f(1))的切线方程;
(2)若?x∈(0,1],|f(x)|≥1恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案