精英家教网 > 高中数学 > 题目详情
1.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$=(2,-3)、$\overrightarrow{b}$=(x,6),且$\overrightarrow{a}$∥$\overrightarrow{b}$.则|$\overrightarrow{a}$+$\overrightarrow{b}$|的值为(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.5D.13

分析 通过向量平行,求出x,然后求解向量的模.

解答 解:向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$=(2,-3)、$\overrightarrow{b}$=(x,6),且$\overrightarrow{a}$∥$\overrightarrow{b}$.
可得:-3x=12,解得x=-4.
|$\overrightarrow{a}$+$\overrightarrow{b}$|=|(2,-3)+(-4,6)|=|(-2,3)=$\sqrt{4+9}$=$\sqrt{13}$.
故选:B.|

点评 本题考查向量的坐标运算,向量的模的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}$(t为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,圆C的方程为ρ=2$\sqrt{5}$sinθ.若点P的坐标为(3,$\sqrt{5}}$),求PA+PB的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.点P(x,y)在三角形ABC的边界和内部运动,其中A(1,0),B(2,1),C(4,4),已知m>0,n>0.
(1)求z=2x-y的最小值M和最大值N;
(2)若m+n=M,求$\frac{4}{m}$+$\frac{9}{n}$的最小值,并求此时的m,n的值;
(3)若m+n+mn=N,求mn的最大值和m+n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知圆C:x2+y2+4x-6y-3=0
(1)求过点M(-6,-5)的圆C的切线方程;
(2)若圆C上有两点P(x1,y1)、Q(x2,y2)关于直线x+my+5=0对称,且x1+x2+2x1x2=-14,求m的值和直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-ax+1,x∈R.
(1)若f(x)≥0恒成立,求a的取值范围;
(2)当a∈(0,3),求函数y=f(x)在x∈[1,2]上的最大值;
(3)任意x1,x2∈[1,2],使得|f(x1)-f(x2)|≤4恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.对于实数x∈(0,$\frac{π}{2}}$),f(x)=$\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}}$.
(I)f(x)≥t恒成立,求t的最大值;
(II)在(I)的条件下,求不等式|x+t|+|x-2|≥5的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数y=$\frac{(1-x)^{2}}{x}$+$\frac{{x}^{2}}{1-x}$(0<x<1)的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.函数f(x)=2x-ex+1.
(1)求f(x)的最大值;
(2)已知x∈(0,1),af(x)<tanx,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线y=$\frac{1}{e}$是函数f(x)=$\frac{ax}{e^x}$的切线(其中e=2.71828…).
(I)求实数a的值;
(Ⅱ)若对任意的x∈(0,2),都有f(x)<$\frac{m}{{2x-{x^2}}}$成立,求实数m的取值范围;
(Ⅲ)若函数g(x)=lnf(x)-b的两个零点为x1,x2,证明:g′(x1)+g′(x2)>$g'(\frac{{{x_1}+{x_2}}}{2})$.

查看答案和解析>>

同步练习册答案