11£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£¬ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxOyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£®ÈôµãPµÄ×ø±êΪ£¨3£¬$\sqrt{5}}$£©£¬ÇóPA+PBµÄÖµ£®

·ÖÎö °ÑÔ²CµÄ¼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬°ÑÖ±ÏßlµÄ²ÎÊý·½³Ì´úÈëÖ±½Ç×ø±ê·½³Ì£¬ÀûÓøùÓëϵÊýµÄ¹ØÏµ¡¢²ÎÊýµÄ¼¸ºÎÒâÒå¼´¿ÉµÃ³ö£®

½â´ð ½â£ºÔ²CµÄ·½³ÌΪ¦Ñ=2$\sqrt{5}$sin¦È£¬¼´${¦Ñ}^{2}=2\sqrt{5}$¦Ñsin¦È£¬
»¯ÎªÖ±½Ç×ø±ê·½³Ì£ºx2+y2=2$\sqrt{5}$y£¬
Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=3-\frac{{\sqrt{2}}}{2}t\\ y=\sqrt{5}+\frac{{\sqrt{2}}}{2}t\end{array}$£¨tΪ²ÎÊý£©£¬
´úÈëÉÏÊö·½³Ì¿ÉµÃ£ºt2-3$\sqrt{2}$t+4=0£¬
¡àt1+t2=3$\sqrt{2}$£¬
¡àPA+PB=|t1+t2|=3$\sqrt{2}$£®

µãÆÀ ±¾ÌâÖ÷Òª¿¼²é¼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄת»¯¡¢²ÎÊý·½³ÌÓëÆÕͨ·½³ÌµÄת»¯¼°ÆäÓ¦Óá¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµµÈ»ù´¡ÖªÊ¶£¬ÒâÔÚ¿¼²é¿¼ÉúµÄ·ÖÎöÎÊÌâ½â¾öÎÊÌâµÄÄÜÁ¦¡¢×ª»¯ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªa£¬b¡ÊR£¬²»µÈʽ$|\begin{array}{l}{x^2}&{1}&{x}\\{b}&{-a}&{1}\\{x}&{a}&{-1}\end{array}|$£¾0µÄ½âΪ1£¼x£¼2£¬Çóa£¬bµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=log2$\frac{2x-1}{2x+1}$£¬g£¨x£©=log2$\frac{2x+1}{8x+12}$£®
£¨1£©ÇóÖ¤£ºº¯Êýy=f£¨x£©µÄͼÏó¹ØÓÚ×ø±êÔ­µã¶Ô³Æ£»
£¨2£©ÇóÖ¤£ºf£¨x+1£©-2=g£¨x£©£¬²¢Ö¸³öº¯Êýy=g£¨x£©Í¼Ïó¶Ô³ÆÖÐÐĵÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=\sqrt{3}cos¦Á\\ y=sin¦Á\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÈôÒÔÔ­µãΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñ£¨sin¦È-cos¦È£©=4£¬
£¨1£©ÒÑÖªµãMµÄ¼«×ø±êΪ£¨2$\sqrt{2}$£¬$\frac{¦Ð}{4}$£©£¬Ð´³öµãM¹ØÓÚÖ±Ïßl¶Ô³ÆµãM¡äµÄÖ±½Ç×ø±ê£»
£¨2£©ÉèµãQÊÇÇúÏßCÉϵÄÒ»¸ö¶¯µã£¬ÇóËüµ½Ö±ÏßlµÄ¾àÀëµÄ×îСֵÓë×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®º¯Êýf£¨x£©=x2-|x|-6£¬Ôòf£¨x£©µÄÁãµã¸öÊýΪ£¨¡¡¡¡£©
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÒÑÖªÔ²CµÄ·½³ÌΪx2+y2=4£®
£¨1£©Çó¹ýµãP£¨1£¬2£©ÇÒÓëÔ²CÏàÇеÄÖ±ÏßlµÄ·½³Ì£»
£¨2£©Ö±Ïßl¹ýµãP£¨1£¬2£©£¬ÇÒÓëÔ²C½»ÓÚA£¬BÁ½µã£¬Èô|AB|=2$\sqrt{3}$£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨3£©MÊÇÔ²CÉϵ͝µã£¬¶¨µãNµÄ×ø±êΪ£¨0£¬1£©£¬ÈôQΪÏß¶ÎMNµÄÖе㣬Ç󶯵ãQµÄ¹ì¼£·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªÔ²µÄ·½³ÌΪx2+y2=2£¬ÈôÖ±Ïßy=x-bÓëÔ²ÏàÇУ¬ÔòbµÈÓÚ£¨¡¡¡¡£©
A£®2B£®-2C£®0D£®2»ò-2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®ÒÑÖªÕýÈýÀâ×¶P-ABCµÄÍâ½ÓÇòµÄ°ë¾¶Îª2£¬ÇÒÇòÐÄÔÚµãA£¬B£¬CËùÈ·¶¨µÄÆ½ÃæÉÏ£¬Ôò¸ÃÕýÈýÀâ×¶µÄ±íÃæ»ýÊÇ$3£¨\sqrt{15}+\sqrt{3}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈôÏòÁ¿$\overrightarrow{a}$£¬$\overrightarrow{b}$Âú×㣺$\overrightarrow{a}$=£¨2£¬-3£©¡¢$\overrightarrow{b}$=£¨x£¬6£©£¬ÇÒ$\overrightarrow{a}$¡Î$\overrightarrow{b}$£®Ôò|$\overrightarrow{a}$+$\overrightarrow{b}$|µÄֵΪ£¨¡¡¡¡£©
A£®$\sqrt{5}$B£®$\sqrt{13}$C£®5D£®13

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸