精英家教网 > 高中数学 > 题目详情
13.函数y=$\frac{(1-x)^{2}}{x}$+$\frac{{x}^{2}}{1-x}$(0<x<1)的最小值为1.

分析 变形利用基本不等式的性质即可得出.

解答 解:y=$\frac{(1-x)^{2}}{x}$+$\frac{{x}^{2}}{1-x}$=$\frac{1-2x+{x}^{2}}{x}$+$\frac{{x}^{2}-1+1}{1-x}$=$\frac{1}{x}$-2+x-(x+1)+$\frac{1}{1-x}$=$\frac{1}{x}$+$\frac{1}{1-x}$-3,
∵0<x<1,
∴$\frac{1}{x}$+$\frac{1}{1-x}$=[x+(1-x)]$(\frac{1}{x}+\frac{1}{1-x})$=2+$\frac{1-x}{x}$+$\frac{x}{1-x}$≥2+2$\sqrt{\frac{1-x}{x}×\frac{x}{1-x}}$=4,当且仅当1-x=x,即x=$\frac{1}{2}$时取等号.
∴函数y=$\frac{(1-x)^{2}}{x}$+$\frac{{x}^{2}}{1-x}$(0<x<1)的最小值为1.
故答案为:1.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知圆的方程为x2+y2=2,若直线y=x-b与圆相切,则b等于(  )
A.2B.-2C.0D.2或-2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.阅读下面材料:
根据两角和与差的正弦公式,有sin(α+β)=sinαcosβ+cosαsinβ   ①
sin(α-β)=sinαcosβ-cosαsinβ   ②
由①+②得sin(α+β)+sin(α-β)=2sinαcosβ  ③
令α+β=A,α-β=B 有α=$\frac{A+B}{2}$,β=$\frac{A-B}{2}$
代入③得 sinA+sinB=2sin$\frac{A+B}{2}$cos$\frac{A-B}{2}$.
(Ⅰ)类比上述推理方法,根据两角和与差的余弦公式,证明:
cosA-cosB=2sin$\frac{A+B}{2}$sin$\frac{A-B}{2}$.;
(Ⅱ)在△ABC中,求T=sinA+sinB+sinC+sin$\frac{π}{3}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足:$\overrightarrow{a}$=(2,-3)、$\overrightarrow{b}$=(x,6),且$\overrightarrow{a}$∥$\overrightarrow{b}$.则|$\overrightarrow{a}$+$\overrightarrow{b}$|的值为(  )
A.$\sqrt{5}$B.$\sqrt{13}$C.5D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=x2-2x+mlnx+1,其中m为常数.
(1)若m≥$\frac{1}{2}$,证明:函数f(x)在定义域上是增函数;
(2)若函数f(x)有唯一极值点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知二阶矩阵M有特征值λ=3,及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
(2)在极坐标系中,设圆C经过点P($\sqrt{3}$,$\frac{π}{6}$),圆心是直线$ρsin(\frac{π}{3}-θ)$=$\frac{\sqrt{3}}{2}$与极轴的交点,求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\frac{lnx+k}{{e}^{x}}$(其中k∈R,e是自然对数的底数),f′(x)为f(x)导函数.
(Ⅰ)若k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)若f′(1)=0,试证明:对任意x>0,f′(x)<$\frac{{e}^{-2}+1}{{x}^{2}+x}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=xlnx-$\frac{a}{2}$x2-x+a(a∈R)在其定义域内有两个不同的极值点,则实数a的取值范围是(0,$\frac{1}{e}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(mx)-x+1,g(x)=(x-1)ex-mx,m>0.
(Ⅰ)若f(x)的最大值为0,求m的值;
(Ⅱ)求证:g(x)仅有一个极值点x0,且$\frac{1}{2}$ln(m+1)<x0<m.

查看答案和解析>>

同步练习册答案