1£®ÒÑÖª¶þ½×¾ØÕóMÓÐÌØÕ÷Öµ¦Ë=3£¬¼°¶ÔÓ¦µÄÒ»¸öÌØÕ÷ÏòÁ¿$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$£¬²¢ÇÒM¶ÔÓ¦µÄ±ä»»½«µã£¨-1£¬2£©±ä»»³É£¨9£¬15£©£¬Çó¾ØÕóM£®
£¨2£©ÔÚ¼«×ø±êϵÖУ¬ÉèÔ²C¾­¹ýµãP£¨$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©£¬Ô²ÐÄÊÇÖ±Ïß$¦Ñsin£¨\frac{¦Ð}{3}-¦È£©$=$\frac{\sqrt{3}}{2}$Ó뼫ÖáµÄ½»µã£¬ÇóÔ²CµÄ¼«×ø±ê·½³Ì£®

·ÖÎö £¨1£©ÉèM=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$£¬¸ù¾Ý¾ØÕó±ä»»£¬Áз½³Ì×飬¼´¿ÉÇóµÃa¡¢b¡¢cºÍdµÄÖµ£¬ÇóµÃM£»
£¨2£©Ô²ÐÄΪֱÏß$¦Ñsin£¨\frac{¦Ð}{3}-¦È£©$=$\frac{\sqrt{3}}{2}$Óë¼«×ø±êµÄ½»µã£¬Áî¦È=0£¬µÃ¦Ñ=1£¬¼´¿ÉÇóµÃÔ²ÐÄ×ø±ê¼°°ë¾¶£¬¼´¿ÉÇóµÃÔ²CµÄ¼«×ø±ê·½³Ì£®

½â´ð ½â£º£¨1£©ÉèM=$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$£¬ÓÉ$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{1}\\{1}\end{array}]$=3$[\begin{array}{l}{1}\\{1}\end{array}]$£¬µÃ$\left\{\begin{array}{l}{a+b=3}\\{c+d=3}\end{array}\right.$£¬
ÓÉ$[\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}]$$[\begin{array}{l}{-1}\\{2}\end{array}]$=$[\begin{array}{l}{9}\\{15}\end{array}]$£¬µÃ£º$\left\{\begin{array}{l}{-a+2b=9}\\{-c+2d=3}\end{array}\right.$£¬
½âµÃa=-1£¬b=4£¬c=-3£¬d=6£¬
¹ÊM=$[\begin{array}{l}{-1}&{4}\\{-3}&{6}\end{array}]$£¬
£¨2£©ÒòΪԲÐÄΪֱÏß$¦Ñsin£¨\frac{¦Ð}{3}-¦È£©$=$\frac{\sqrt{3}}{2}$Óë¼«×ø±êµÄ½»µã£¬
ËùÒÔÁî¦È=0£¬µÃ¦Ñ=1£¬¼´Ô²ÐÄΪ£¨1£¬0£©£¬
ÓÖÔ²ÐÄC¾­¹ýµãP£¨$\sqrt{3}$£¬$\frac{¦Ð}{6}$£©£¬
ËùÒÔÔ²µÄ°ë¾¶r=$\sqrt{3+1-2\sqrt{3}cos\frac{¦Ð}{6}}$=1£¬
ËùÒÔÔ²¹ýÔ­µã£¬Æä¼«×ø±ê·½³Ì¦Ñ=2cos¦È£®

µãÆÀ ±¾Ì⿼²é¾ØÕóµÄ±ä»»£¬¿¼²é¼«×ø±êϵÖÐÖ±ÏßÓëԲλÖùØÏµ£¬¿¼²éת»¯Ë¼Ï룬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®½«µãMµÄ¼«×ø±ê£¨2£¬$\frac{¦Ð}{3}}$£©»¯³ÉÖ±½Ç×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨-1£¬-1£©B£®£¨1£¬1£©C£®£¨1£¬$\sqrt{3}}$£©D£®£¨${\sqrt{3}$£¬1£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÔ²C£ºx2+y2+4x-6y-3=0
£¨1£©Çó¹ýµãM£¨-6£¬-5£©µÄÔ²CµÄÇÐÏß·½³Ì£»
£¨2£©ÈôÔ²CÉÏÓÐÁ½µãP£¨x1£¬y1£©¡¢Q£¨x2£¬y2£©¹ØÓÚÖ±Ïßx+my+5=0¶Ô³Æ£¬ÇÒx1+x2+2x1x2=-14£¬ÇómµÄÖµºÍÖ±ÏßPQµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®¶ÔÓÚʵÊýx¡Ê£¨0£¬$\frac{¦Ð}{2}}$£©£¬f£¨x£©=$\frac{1}{{9{{sin}^2}x}}+\frac{4}{{9{{cos}^2}x}}$£®
£¨I£©f£¨x£©¡Ýtºã³ÉÁ¢£¬ÇótµÄ×î´óÖµ£»
£¨II£©ÔÚ£¨I£©µÄÌõ¼þÏ£¬Çó²»µÈʽ|x+t|+|x-2|¡Ý5µÄ½â¼¯£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®º¯Êýy=$\frac{£¨1-x£©^{2}}{x}$+$\frac{{x}^{2}}{1-x}$£¨0£¼x£¼1£©µÄ×îСֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=xlnx+ax£¨a¡ÊR£©£®
£¨1£©Èôa=-3£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èô¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©£¬f£¨x£©£¾£¨k+a-1£©x-kºã³ÉÁ¢£¬ÇóÕýÕûÊýkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®º¯Êýf£¨x£©=2x-ex+1£®
£¨1£©Çóf£¨x£©µÄ×î´óÖµ£»
£¨2£©ÒÑÖªx¡Ê£¨0£¬1£©£¬af£¨x£©£¼tanx£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÓÒ½¹µãΪF£¬ÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ÇÒÖ±Ïß2x+y-3=0ÓëÍÖÔ²CÏàÇУ®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©Èçͼ£¬µãMÊÇÖ±Ïßx=2ÉϵÄÒ»¸ö¶¯µã£¬OÎª×ø±êÔ­µã¹ýµãF×÷0MµÄ´¹Ïߣ¬´¹×ãΪK£¬²¢ÑÓ³¤FKÓëÒÔOMΪֱ¾¶µÄÔ²½»ÓÚµãN£¬ÇóÖ¤£º$\overrightarrow{OM}$•$\overrightarrow{ON}$Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦Õ}\\{y=\sqrt{3}+tsin¦Õ}\end{array}\right.$£¨tΪ²ÎÊý£¬¦Õ¡Ê[0£¬$\frac{¦Ð}{3}$]£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÔ²CµÄÔ²ÐÄCµÄ¼«×ø±êΪ£¨2£¬$\frac{¦Ð}{3}$£©£¬°ë¾¶Îª2£¬Ö±ÏßlÓëÔ²CÏཻÓÚM£¬NÁ½µã£®
£¨I£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©Ç󵱦ձ仯ʱ£¬ÏÒ³¤|MN|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸