精英家教网 > 高中数学 > 题目详情
11.在直角坐标系xOy中,直线l的参数方程为$\left\{\begin{array}{l}{x=2+tcosφ}\\{y=\sqrt{3}+tsinφ}\end{array}\right.$(t为参数,φ∈[0,$\frac{π}{3}$]),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,已知圆C的圆心C的极坐标为(2,$\frac{π}{3}$),半径为2,直线l与圆C相交于M,N两点.
(I)求圆C的极坐标方程;
(Ⅱ)求当φ变化时,弦长|MN|的取值范围.

分析 (I)由圆C的圆心C的极坐标为(2,$\frac{π}{3}$),即$(1,\sqrt{3})$,半径为2,可得圆的标准方程为:$(x-1)^{2}+(y-\sqrt{3})^{2}$=4,展开 利用互化公式即可化为极坐标方程.
(II)把直线l的参数方程代入圆C的方程可得:t2+2tcosφ-3=0,利用根与系数的关系可得:|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$,再利用三角函数的单调性与值域即可得出.

解答 解:(I)由圆C的圆心C的极坐标为(2,$\frac{π}{3}$),即$(1,\sqrt{3})$,半径为2,可得圆的标准方程为:$(x-1)^{2}+(y-\sqrt{3})^{2}$=4,
展开可得:x2+y2-2x-2$\sqrt{3}$y=0,化为极坐标方程:ρ2-2ρcosθ-2$\sqrt{3}$ρsinθ=0,即ρ=2cosθ+2$\sqrt{3}$sinθ=4cos$(\frac{π}{3}-θ)$.
(II)把直线l的参数方程代入圆C的方程可得:t2+2tcosφ-3=0,
∴t1+t2=-2cosφ,t1t2=-3.
∴|MN|=|t1-t2|=$\sqrt{({t}_{1}+{t}_{2})^{2}-4{t}_{1}{t}_{2}}$=2$\sqrt{co{s}^{2}φ+3}$,
∵φ∈[0,$\frac{π}{3}$],∴cosφ∈$[\frac{1}{2},1]$,cos2φ∈$[\frac{1}{4},1]$.
∴|MN|∈$[\sqrt{13},4]$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、直线参数方程的应用、一元二次方程的根与系数的关系、三角函数的单调性与值域,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知二阶矩阵M有特征值λ=3,及对应的一个特征向量$\overrightarrow{{e}_{1}}$=$[\begin{array}{l}{1}\\{1}\end{array}]$,并且M对应的变换将点(-1,2)变换成(9,15),求矩阵M.
(2)在极坐标系中,设圆C经过点P($\sqrt{3}$,$\frac{π}{6}$),圆心是直线$ρsin(\frac{π}{3}-θ)$=$\frac{\sqrt{3}}{2}$与极轴的交点,求圆C的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)分别写出下列函数:y=log2x,x∈[$\frac{1}{2}$,4],y=cosx,x∈[-$\frac{π}{3}$,$\frac{π}{2}$]的最小值和最大值;
(2)设函数y=f(x)的定义域为D,最小值为m,最大值为M,若m∈D且M∈D,则称y=f(x),x∈D为“B函数”;
①从第(1)小题给出的两个函数中,选出“B函数”;
②若f(x)=$\frac{1}{2}$x2-x+$\frac{3}{2}$,x∈[1,b]为“B函数”,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2-lnx(a∈R)
(1)当a=1时,求曲线y=f(x)在点(1,f(1))的切线方程;
(2)若?x∈(0,1],|f(x)|≥1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=ln(mx)-x+1,g(x)=(x-1)ex-mx,m>0.
(Ⅰ)若f(x)的最大值为0,求m的值;
(Ⅱ)求证:g(x)仅有一个极值点x0,且$\frac{1}{2}$ln(m+1)<x0<m.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{1}{2}t}\end{array}$(t为参数),曲线C的极坐标方程为ρ=2cosθ.
(1)求直线l和曲线C的直角坐标方程;?
(2)求曲线C上的点到直线l的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在平面直角坐标系xOy中,点M的坐标是(-1,$\sqrt{3}$).以O为极点,x轴的正半轴为极轴建立极坐标系,则M的极坐标为(  )
A.(2,$-\frac{2π}{3}$)B.(2,$-\frac{π}{3}$)C.(2,$\frac{π}{3}$)D.(2,$\frac{2π}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)记F(x)=f(x)-g(x),求证:F(x)=0在区间(1,+∞)内有且仅有一个实根;
(2)用min{a,b}表示a,b中的最小值,设函数m(x)=min{f(x),g(x)},若方程m(x)=c在(1,+∞)有两个不相等的实根x1,x2(x1<x2),记F(x)=0在(1,+∞)内的实根x0
求证:$\frac{{x}_{1}+{x}_{2}}{2}$>x0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四边形ADBC是圆内接四边形,∠CAB=∠ADC.延长DA到E使BD=AE,连结EC.
(1)求证:CE=CD;
(2)若AC⊥BC,CD=1,求AD+BD的值.

查看答案和解析>>

同步练习册答案