16£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{1}{2}t}\end{array}$£¨tΪ²ÎÊý£©£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£®
£¨1£©ÇóÖ±ÏßlºÍÇúÏßCµÄÖ±½Ç×ø±ê·½³Ì£»?
£¨2£©ÇóÇúÏßCÉϵĵ㵽ֱÏßlµÄ¾àÀëµÄ×îÖµ£®

·ÖÎö £¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{1}{2}t}\end{array}$£¨tΪ²ÎÊý£©£¬ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ì£®ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬ÀûÓû¥»¯¹«Ê½¿ÉµÃÖ±½Ç×ø±ê·½³Ì£®
£¨2£©ÇúÏßCµÄÔ²ÐÄΪ£¨1£¬0£©£¬°ë¾¶Îª1£¬ÔòÔ²Ðĵ½Ö±ÏߵľàÀëd=$\frac{1}{2}$£¬Óë°ë¾¶±È½Ï¼´¿ÉµÃ³ö£®

½â´ð ½â£º£¨1£©Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{1}{2}t}\end{array}$£¨tΪ²ÎÊý£©£¬
ÏûÈ¥²ÎÊýt¿ÉµÃÆÕͨ·½³Ìl£º$x-\sqrt{3}y-2=0$£®
ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=2cos¦È£¬¼´¦Ñ2=2¦Ñcos¦È£¬
¿ÉµÃÖ±½Ç×ø±ê·½³ÌC£ºx2+y2-2x=0£¬Å䷽Ϊ£¨x-1£©2+y2=1£®
£¨2£©ÇúÏßCµÄÔ²ÐÄΪ£¨1£¬0£©£¬°ë¾¶Îª1£¬
ÔòÔ²Ðĵ½Ö±ÏߵľàÀë$d=\frac{{|{1-2}|}}{2}=\frac{1}{2}£¼1$£¬¹ÊÖ±ÏßÓëÔ²Ïཻ£¬
¡à${d_{min}}=0£¬{d_{max}}=1+\frac{1}{2}=\frac{3}{2}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì¡¢Ö±ÏßÓëÔ²ÏཻÏÒ³¤ÎÊÌâ¡¢µãµ½Ö±ÏߵľàÀ빫ʽ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªº¯Êýf£¨x£©=xlnx+ax£¨a¡ÊR£©£®
£¨1£©Èôa=-3£¬Çóº¯Êýf£¨x£©µÄµ¥µ÷µÝÔöÇø¼ä£»
£¨2£©Èô¶ÔÈÎÒâµÄx¡Ê£¨1£¬+¡Þ£©£¬f£¨x£©£¾£¨k+a-1£©x-kºã³ÉÁ¢£¬ÇóÕýÕûÊýkµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑ֪ʵÊýx£¬yÂú×㣨x-1£©2+£¨y-1£©2¡Ü1£¬Ôò|y-x-2|+|x+2y+2|µÄ×î´óÖµÊÇ£¨¡¡¡¡£©
A£®6B£®$\sqrt{2}$+$\sqrt{5}$C£®7+$\sqrt{5}$D£®9

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÈôÖ±Ïßy=x-bÓëÇúÏß$\left\{\begin{array}{l}{x=2+cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦È¡Ê[0£¬2¦Ð]£©ÓÐÁ½¸ö²»Í¬µÄ¹«¹²µã£¬ÔòʵÊýbµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®£¨2-$\sqrt{2}$£¬1£©B£®[2-$\sqrt{2}$£¬2+$\sqrt{2}$]C£®£¨-¡Þ£¬2-$\sqrt{2}$£©¡È£¨2+$\sqrt{2}$£¬+¡Þ£©D£®£¨2-$\sqrt{2}$£¬2+$\sqrt{2}$£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬Ö±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+tcos¦Õ}\\{y=\sqrt{3}+tsin¦Õ}\end{array}\right.$£¨tΪ²ÎÊý£¬¦Õ¡Ê[0£¬$\frac{¦Ð}{3}$]£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÒÑÖªÔ²CµÄÔ²ÐÄCµÄ¼«×ø±êΪ£¨2£¬$\frac{¦Ð}{3}$£©£¬°ë¾¶Îª2£¬Ö±ÏßlÓëÔ²CÏཻÓÚM£¬NÁ½µã£®
£¨I£©ÇóÔ²CµÄ¼«×ø±ê·½³Ì£»
£¨¢ò£©Ç󵱦ձ仯ʱ£¬ÏÒ³¤|MN|µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªÔ²C£»x2+y2+6x-2y+k=0£¬Ö±Ïßl£º2x-y+2=0£®
£¨1£©ÇóʵÊýkµÄȡֵ·¶Î§£»
£¨2£©ÈôÔ²CÓëÖ±Ïßl½»ÓÚA£¬BÁ½µã£¬ÇÒ|AB|=2£¬ÇóÔ²CµÄ±ê×¼·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

8£®ÇúÏß$\left\{\begin{array}{l}{x=5+\frac{\sqrt{3}}{2}t}\\{y=-2+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©ÓëÇúÏß$\left\{\begin{array}{l}{x=5+\sqrt{3}t}\\{y=-2+t}\end{array}\right.$£¨tΪ²ÎÊý£©±íʾµÄÊÇͬһÇúÏߣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®5¸öÈËÅųÉÒ»ÅÅ£¬ÈôA¡¢B¡¢CÈýÈË×óÓÒ˳ÐòÒ»¶¨£¬ÄÇô²»Í¬ÅÅ·¨ÓУ¨¡¡¡¡£©
A£®$A_5^5$B£®$A_3^3•A_3^3$C£®$\frac{A_5^5}{A_3^3}$D£®$A_3^3$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªan=$\frac{n-\sqrt{2015}}{n-\sqrt{2016}}$£¨n¡ÊN*£©£¬ÔòÊýÁÐ{an}µÄǰ50ÏîÖÐ×îСÏîºÍ×î´óÏî·Ö±ðÊÇ£¨¡¡¡¡£©
A£®a1£¬a50B£®a1£¬a44C£®a45£¬a50D£®a44£¬a45

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸