精英家教网 > 高中数学 > 题目详情
4.若直线y=x-b与曲线$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ∈[0,2π])有两个不同的公共点,则实数b的取值范围为(  )
A.(2-$\sqrt{2}$,1)B.[2-$\sqrt{2}$,2+$\sqrt{2}$]C.(-∞,2-$\sqrt{2}$)∪(2+$\sqrt{2}$,+∞)D.(2-$\sqrt{2}$,2+$\sqrt{2}$)

分析 将参数方程化为普通方程,通过直线与圆有两个不同的交点,可得$\frac{|2-b|}{\sqrt{2}}$<1,从而求出b的范围;也可利用数形结合法求解.

解答 解:曲线$\left\{\begin{array}{l}{x=2+cosθ}\\{y=sinθ}\end{array}\right.$(θ∈[0,2π])化为普通方程(x-2)2+y2=1,表示圆,
因为直线与圆有两个不同的交点,所以$\frac{|2-b|}{\sqrt{2}}$<1,解得2-$\sqrt{2}$<b<2+$\sqrt{2}$.
法2:利用数形结合进行分析得|AC|=2-b=$\sqrt{2}$,
∴b=2-$\sqrt{2}$
同理分析,可知2-$\sqrt{2}$<b<2+$\sqrt{2}$.
故选:D.

点评 此题考查参数方程与普通方程的区别和联系,两者要会互相转化,根据实际情况选择不同的方程进行求解,这也是每年高考必考的热点问题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.解关于x的不等式:
(1)ax2-(a+1)x+1<0(a∈R);
(2)ax2+(2a-1)x-2<0(a∈R);
(3)ax2-2x+1<0(a∈R);
(4)x2+x+m≤0(x>0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若直线ax+2y+1=0垂直平分圆x2+y2-2x+2ay=0的一条弦,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=alnx,g(x)=$\frac{1}{2}{x^2}$.
(I)若a>0,求h(x)=f(x)-g(x)的单调区间;
(Ⅱ)若a=1,对任意的x1>x2>0,不等式m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立.求m(m∈Z,m≤1)的值;
(Ⅲ)记g′(x)为g(x)的导函数,若不等式f(x)+2g′(x)<(a+3)x-g(x)在x∈[1,e]上有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax2-lnx(a∈R)
(1)当a=1时,求曲线y=f(x)在点(1,f(1))的切线方程;
(2)若?x∈(0,1],|f(x)|≥1恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数r(x)=$\frac{1-x}{1+x}$,
(1)若f(x)=r(x)lnx,求函数f(x)的单调区间和最大值;
(2)若f(x)=$\frac{lnx}{ar(x)}$,且对任意x∈(0,1),恒有f(x)<-2,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的参数方程为$\left\{{\begin{array}{l}{x=2+\frac{{\sqrt{2}}}{2}t}\\{y=\frac{1}{2}t}\end{array}$(t为参数),曲线C的极坐标方程为ρ=2cosθ.
(1)求直线l和曲线C的直角坐标方程;?
(2)求曲线C上的点到直线l的距离的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知在直角坐标系xOy中,极点与坐标原点O重合,极轴与x轴正半轴重合,直线l的极坐标方程为ρsinθ-4ρcosθ+2=0,曲线C的参数方程为$\left\{\begin{array}{l}{x=t}\\{y=4{t}^{2}}\end{array}\right.$ (t∈R).
(1)将直线l的极坐标方程化为直角坐标方程,将曲线的参数方程化为普通方程;
(2)若点A是直线l上的一个动点,点B是曲线C上的一个动点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有人发现,多看电视容易使人变冷漠,如表是一个调查机构对此现象的调查结果:
冷漠不冷漠总计
多看电视6842110
少看电视203858
总计8880168
P(K2≥k)0.0250.0100.0050.001
k5.0246.6357.87910.828
K2=$\frac{{168×{{({68×38-20×42})}^2}}}{110×58×88×80}$≈11.377,下列说法正确的是(  )
A.大约有99.9%的把握认为“多看电视与人变冷漠”有关系
B.大约有99.9%的把握认为“多看电视与人变冷漠”没有关系
C.某人爱看电视,则他变冷漠的可能性为99.9%
D.爱看电视的人中大约有99.9%会变冷漠

查看答案和解析>>

同步练习册答案